figshare
Browse
bm5b01010_si_001.pdf (2.19 MB)

Synthesis of a Polyhistidine-bearing Amphipol and its Use for Immobilizing Membrane Proteins

Download (2.19 MB)
journal contribution
posted on 2015-12-14, 00:00 authored by Fabrice Giusti, Pascal Kessler, Randi Westh Hansen, Eduardo A. Della Pia, Christel Le Bon, Gilles Mourier, Jean-Luc Popot, Karen L. Martinez, Manuela Zoonens
Amphipols (APols) are short amphipathic polymers that stabilize membrane proteins (MPs) in aqueous solutions. In the present study, A8–35, a polyacrylate-based APol, was grafted with hexahistidine tags (His6-tags). The synthesis and characterization of this novel functionalized APol, named HistAPol, are described. Its ability to immobilize MPs on nickel ion-bearing surfaces was tested using two complementary methods, immobilized metal affinity chromatography (IMAC) and surface plasmon resonance (SPR). Compared to a single His6-tag fused at one extremity of a MP, the presence of several His6-tags carried by the APol belt surrounding the transmembrane domain of a MP increases remarkably the affinity of the protein/APol complex for nickel ion-bearing SPR chips, whereas it does not show such a strong effect on an IMAC resin. HistAPol-mediated immobilization, which allows reversibility of the interaction and easy regeneration of the supports and dispenses with any genetic modification of the target protein, provides a novel, promising tool for attaching MPs onto solid supports while stabilizing them.

History