figshare
Browse
rspb20161615_si_001.pdf (433.27 kB)

Supplementary figures and tables for Directional selection effects on patterns of phenotypic (co)variation in wild populations

Download (433.27 kB)
journal contribution
posted on 2016-11-14, 10:17 authored by A. P. A. Assis, J. L. Patton, A. Hubbe, G. Marroig
Phenotypic (co)variation is a prerequisite for evolutionary change, and understanding how (co)variation evolves is of crucial importance to the biological sciences. Theoretical models predict that under directional selection, phenotypic (co)variation should evolve in step with the underlying adaptive landscape, increasing the degree of correlation among co-selected traits as well as the amount of genetic variance in the direction of selection. Whether either of these outcomes occurs in natural populations is an open question and thus an important gap in evolutionary theory. Here we documented changes in the phenotypic (co)variation structure in two separate natural populations in each of two chipmunk species (Tamias alpinus and Tamias speciosus) undergoing directional selection. In populations where selection was strongest (those of T. alpinus), we observed changes, at least for one population, in phenotypic (co)variation that matched theoretical expectations, namely an increase of both phenotypic integration and (co)variance in the direction of selection and a re-alignment of the major axis of variation with the selection gradient.

History

Usage metrics

    Proceedings of the Royal Society B: Biological Sciences

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC