Supplementary Material for: Transport and Catabolism of Pentitols by Listeria monocytogenes

<p>Transposon insertion into <i>Listeria monocytogenes lmo2665</i>, which encodes an EIIC of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), was found to prevent D-arabitol utilization. We confirm this result with a deletion mutant and show that Lmo2665 is also required for D-xylitol utilization. We therefore called this protein EIIC<sup>Axl</sup>. Both pentitols are probably catabolized via the pentose phosphate pathway (PPP) because <i>lmo2665</i> belongs to an operon, which encodes the three PTS<sup>Axl</sup> components, two sugar-P dehydrogenases, and most PPP enzymes. The two dehydrogenases oxidize the pentitol-phosphates produced during PTS-catalyzed transport to the PPP intermediate xylulose-5-P. <i>L. monocytogenes</i> contains another PTS, which exhibits significant sequence identity to PTS<sup>Axl</sup>. Its genes are also part of an operon encoding PPP enzymes. Deletion of the EIIC-encoding gene <i>(lmo0508)</i> affected neither D-arabitol nor D-xylitol utilization, although D-arabitol induces the expression of this operon. Both operons are controlled by MtlR/LicR-type transcription activators (Lmo2668 and Lmo0501, respectively). Phosphorylation of Lmo0501 by the soluble PTS<sup>Axl</sup> components probably explains why D-arabitol also induces the second pentitol operon. Listerial virulence genes are submitted to strong repression by PTS sugars, such as glucose. However, D-arabitol inhibited virulence gene expression only at high concentrations, probably owing to its less efficient utilization compared to glucose.</p>