figshare
Browse
1/1
5 files

Supplementary Material for: Extra- and Intraluminal Elastase Induce Morphologically Distinct Abdominal Aortic Aneurysms in Mice and Thus Represent Specific Subtypes of Human Disease

dataset
posted on 2016-08-17, 12:34 authored by Busch A., Holm A., Wagner N., Ergün S., Rosenfeld M., Otto C., Baur J., Kellersmann R., Lorenz U.

Topical application of elastase to induce arterial aneurysm formation is an emerging murine model of vascular disease. In the context of aortic abdominal aneurysm (AAA), angiotensin II infusion and porcine pancreatic elastase perfusion models are commonly used today. This study, therefore, compares matrix remodeling, inflammation, and angiogenesis as distinct features of aneurysms in two models treated with intra-/extraluminal elastase. C57BL/6 mice underwent intra-/extraluminal elastase application via laparotomy and were followed up for 4 weeks. Basic histology and immunohistochemistry were performed at different time points along with transmission electron microscopy, PCR analysis, TUNEL assays, and blood analysis. Both models did not differ in aneurysm growth rate, but they showed distinct features and results depending on the way of elastase application. Extraluminal aneurysm induction preserved endothelial cell function and elastic fibers but showed ongoing acute inflammation, mainly in the adventitia. The destruction of elastic layers followed by chronic inflammation was a characteristic of intraluminal elastase perfusion, as well as medial angiogenesis, a key feature in human AAA. Different animal models harbor different features of human AAA and must, therefore, be chosen wisely. External elastase application mimics an acute inflammatory aneurysm, whereas intraluminal elastase perfusion shows chronic inflammation with angiogenesis and endothelial destruction, thus better mimicking human disease.

History

Usage metrics

    Journal of Vascular Research

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC