Supplementary Material for: Cystatin C Enhances Glomerular Filtration Rate Estimating Equations in Kidney Transplant Recipients

<b><i>Background:</i></b> The glomerular filtration rate (GFR) estimating equation incorporating both cystatin C and creatinine perform better than those using creatinine or cystatin C alone in patients with reduced GFR. Whether this equation performs well in kidney transplant recipients cross-sectionally, and more importantly, over time has not been addressed. <b><i>Methods:</i></b> We analyzed four GFR estimating equations in participants of the Angiotensin II Blockade for Chronic Allograft Nephropathy Trial (NCT 00067990): Chronic Kidney Disease Epidemiology Collaboration equations based on serum cystatin C and creatinine (eGFR (CKD-EPI-Creat+CysC)), cystatin C alone (eGFR (CKD-EPI-CysC)), creatinine alone (eGFR (CKD-EPI-Creat)) and the Modification of Diet in Renal Disease study equation (eGFR (MDRD)). Iothalamate GFR served as a standard (mGFR). <b><i>Results:</i></b> mGFR, serum creatinine, and cystatin C shortly after transplant were 56.1 ± 17.0 ml/min/1.73 m<sup>2</sup>, 1.2 ± 0.4 mg/dl, and 1.2 ± 0.3 mg/l respectively. eGFR (CKD-EPI-Creat+CysC) was most precise (R<sup>2</sup> = 0.50) but slightly more biased than eGFR (MDRD); 9.0 ± 12.7 versus 6.4 ± 15.8 ml/min/1.73 m<sup>2</sup>, respectively. This improved precision was most evident in recipients with mGFR >60 ml/min/1.73 m<sup>2</sup>. For relative accuracy, eGFR (MDRD) and eGFR (CKD-EPI-Creat+CysC) had the highest percentage of estimates falling within 30% of mGFR; 75.8 and 68.9%, respectively. Longitudinally, equations incorporating cystatin C most closely paralleled the change in mGFR. <b><i>Conclusion:</i></b> eGFR (CKD-EPI-Creat+CysC) is more precise and reflects GFR change over time reasonably well. eGFR (MDRD) had superior performance in recipients with mGFR between 30 and 60 ml/min/1.73 m<sup>2</sup>.