figshare
Browse
rspb20162118_si_001.doc (2.09 MB)

Supplementary Figures and Tables from Genetic and life-history consequences of extreme climate events

Download (2.09 MB)
journal contribution
posted on 2017-01-16, 10:59 authored by Simone Vincenzi, Marc Mangel, Dusan Jesensek, John Carlos Garza, Alain J. Crivelli
Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data, and pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanism responsible for a greater prevalence of faster life histories after the extreme event.

History

Usage metrics

    Proceedings of the Royal Society B: Biological Sciences

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC