figshare
Browse
rsif20160613_si_004.pdf (1.5 MB)

Supplementary Figure 4 from Physical confinement signals regulate the organization of stem cells in three dimensions

Download (1.5 MB)
journal contribution
posted on 2016-10-20, 13:27 authored by Sebastian V. Hadjiantoniou, David Sean, Maxime Ignacio, Michel Godin, Gary W. Slater, Andrew E. Pelling
During embryogenesis, the spherical inner cell mass (ICM) proliferates in the confined environment of a blastocyst. Embryonic stem cells (ESCs) are derived from the ICM, and mimicking embryogenesis in vitro, mouse ESCs (mESCs) are often cultured in hanging droplets. This promotes the formation of a spheroid as the cells sediment and aggregate owing to increased physical confinement and cell-cell interactions. In contrast, mESCs form two-dimensional monolayers on flat substrates and it remains unclear if the difference in organization is owing to a lack of physical confinement or increased cell-substrate versus cell-cell interactions. Employing microfabricated substrates, we demonstrate that a single geometric degree of physical confinement on a surface can also initiate spherogenesis. Experiment and computation reveal that a balance between cell-cell and cell-substrate interactions finely controls the morphology and organization of mESC aggregates. Physical confinement is thus an important regulatory cue in the three-dimensional organization and morphogenesis of developing cells.

History

Usage metrics

    Journal of the Royal Society Interface

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC