Supp Results from Wide-area measurement-based supervision of protection schemes with minimum number of phasor measurement units

Cascade tripping of power lines triggered by maloperation of zone-3 relays during stressed system conditions, such as load encroachment, power swing and voltage instability, has led to many catastrophic power failures worldwide, including India blackouts in 2012. With the introduction of wide-area measurement system (WAMS) into the grids, real-time monitoring on transmission network condition is possible. A phasor measurement unit (PMU) sends time synchronized data to phasor data concentrator which can provide a control signal to substation devices. The latency associated with the communication system makes WAMS suitable for slower form of protection. In this work, a method to identify the faulted line using synchronized data from strategic PMU locations is proposed. Subsequently, a supervisory signal is generated for specific relays in the system for any disturbance or stressed condition. For a given system, an approach to decide the strategic locations for PMU placement is developed, which can be used for determining the minimum number of PMUs required for application of the method. The accuracy of the scheme is tested for faults during normal and stressed conditions in New England 39 bus system simulated using EMTDC/PSCAD software. With such a strategy, maloperation of relays can be averted in many situations and thereby blackouts/large-scale disturbances can be prevented.