Simulation of transportation of 2,4-dinitroanilisole (DNAN); 3-nitro-1,2,4-triazol-5-one (NTO); and nitro-guanidine (NQ) through soil using Hydrus 1D

<p>Continuous training on military ranges with ammunition filled with TNT-based compositions has caused environmental contamination over decades. These ranges may now require remediation for range sustainability, which is expensive, time-consuming, and can compromise use.</p> <p><br></p> <p>Due to increased environmental awareness society expects a preemptive approach for on-going management of military training ranges to minimize damage to the environment. Regarding TNT-based compositions it is possible to estimate likely contamination issues from historical data. However, TNT-based compositions are being replaced by new formulations designed to be less sensitive to accidental insult. A very promising alternative to TNT is 2,4-dinitroanilisole (DNAN), a melt-castable energetic material that has been successfully used as binding agent in some insensitive high explosive (IHE) formulation. For example, when combined with 3-nitro-1,2,4-triazol-5-one (NTO) and nitro-guanidine (NQ) in IMX-101. However, from an environmental point of view, the lack of historical data on how these materials impact the environmental might compromise training capability and disposal procedures in years to come.</p> <p><br></p> <p>To contribute to this area of knowledge, we simulated the dispersion of chemicals through soil using Hydrus-1D, which is a modelling tool for analysis of water flow and solute transport. Primary data was generated by soil column experiments that were artificially spiked with Insensitive High Explosives materials DNAN; NTO; and NQ. The primary aim of the research was to determine whether Hydrus-1D, can be used to predict environmental contamination on military training ranges.</p>