Silver Iodide Microstructures of a Uniform Towerlike Shape: Morphology Purification via a Chemical Dissolution, Simultaneously Boosted Catalytic Durability, and Enhanced Catalytic Performances

The fabrication of microstructures/nanostructures of a uniform yet well-defined morphology has attracted broad interest from a variety of fields of advanced functional materials, especially catalysts. Most of the conventional methods generally suffer from harsh synthesis conditions, requirement of bulky apparatus, or incapability of scalable production, etc. To meet these formidable challenges, it is strongly desired to develop a facile, cost-effective, scalable method to fulfill a morphology purification. By a precipitation reaction between AgNO3 and KI, we report that irregular AgI structures, or their mixture with towerlike AgI architectures could be fabricated. Compared to the former, the mixed structures exhibit enhanced catalytic reactivity toward the photodegradation of Methyl Orange pollutant. However, its catalytic durability, which is one of the most crucial criteria that are required by superior catalysts, is poor. We further show that the irregular structures could be facilely removed from the mixture via a KI-assisted chemical dissolution, producing AgI of a uniform towerlike morphology. Excitingly, after such simple morphology purification, our towerlike AgI displays not only a boosted catalytic durability but also an enhanced catalytic reactivity. Our chemical dissolution-based morphology purification protocol might be extended to other systems, wherein high-quality advanced functional materials of desired properties might be developed.