figshare
Browse
cm8b02616_si_001.pdf (3.79 MB)

Self-Assembly of Nano- to Macroscopic Metal–Phenolic Materials

Download (3.79 MB)
journal contribution
posted on 2018-08-09, 19:17 authored by Gyeongwon Yun, Quinn A. Besford, Stuart T. Johnston, Joseph J. Richardson, Shuaijun Pan, Matthew Biviano, Frank Caruso
The self-assembly of molecular building blocks into well-defined macroscopic materials is desirable for developing emergent functional materials. However, the self-assembly of molecules into macroscopic materials remains challenging, in part because of limitations in controlling the growth and robustness of the materials. Herein, we report the molecular self-assembly of nano- to macroscopic free-standing materials through the coordination of metals with natural phenolic molecules. Our method involves a simple and scalable solution-based template dipping process in precomplexed metal–phenolic solutions, enabling the fabrication of free-standing macroscopic materials of customized architectures (2D and 3D geometries), thickness (about 10 nm to 5 μm), and chemical composition (different metals and phenolic ligands). Our macroscopic free-standing materials can be physically folded and unfolded like origami, yet are selectively degradable. Furthermore, metal nanoparticles can be grown in the macroscopic free-standing films, indicating their potential for future applications in biotechnology and catalysis.

History