figshare
Browse
U220720.pdf (16.26 MB)

Quartz crystal microbalance determination of trace metal ions in solution

Download (16.26 MB)
thesis
posted on 2014-12-15, 10:36 authored by Abdunnaser Mohamed Etorki
This thesis describes development of a new practical acoustic wave and electrochemical sensor for detection of trace metal ions from aqueous solutions using self-assembled monolayer modified electrodes. The gold electrodes of 10 MHz AT-cut piezoelectric quartz crystal resonators were modified with different self-assembled monolayers (SAMs) with --COOH, -SH and --NH free terminal functional groups. Frequency measurements were carried out on emersed and immersed crystals to determine ligand immobilisation. Cyclic voltammetry investigation of [Fe(CN)6] 3-/4-redox chemistry was carried out on the SAM/Au electrodes to investigate the quality and integrity of the SAM. Analysis of this data has lead to a qualitative explanation of electron transfer process involved in the cycling. These SAMs were employed for the detection of target metal ions such as Cd(II), Pb(II), Hg(II) and Cu(II) from single metal ion solutions, based on frequency measurements associated with the binding of different concentrations of metal ions from solution to each surface-bound monolayer. Data for emersed and immersed crystals were used to estimate the amount of metal ions bound to the SAM. Results for the mole ratio of metal ion:SAM were used to select the SAMs having the highest degree of sequestration. The uptake of metal ions from aqueous solution was followed as a function of concentration and attempts made to fit the data to the Langmuir, Temkin, Freudlich, Frumkin, El-Awady and Flory-Huggins isotherms. The relative merits of these isotherms are discussed and heterogeneous binding constants extracted. Selectivity for different metal ions was assessed by estimating the binding constant for target metal ions in single and mixed metal ion solutions.

History

Date of award

2005-01-01

Author affiliation

Chemistry

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC