figshare
Browse
tfac_a_1265672_sm2094.tif (3.09 MB)

Qualitative and quantitative analysis of monomers in polyesters for food contact materials

Download (3.09 MB)
figure
posted on 2016-12-21, 17:33 authored by Fabrian Brenz, Susanne Linke, Thomas Simat

Polyesters (PESs) are gaining more importance on the food contact material (FCM) market and the variety of properties and applications is expected to be wide. In order to acquire the desired properties manufacturers can combine several FCM-approved polyvalent carboxylic acids (PCAs) and polyols as monomers. However, information about the qualitative and quantitative composition of FCM articles is often limited. The method presented here describes the analysis of PESs with the identification and quantification of 25 PES monomers (10 PCA, 15 polyols) by HPLC with diode array detection (HPLC-DAD) and GC-MS after alkaline hydrolysis. Accurate identification and quantification were demonstrated by the analysis of seven different FCM articles made of PESs. The results explained between 97.2% and 103.4% w/w of the polymer composition whilst showing equal molar amounts of PCA and polyols. Quantification proved to be precise and sensitive with coefficients of variation (CVs) below 6.0% for PES samples with monomer concentrations typically ranging from 0.02% to 75% w/w. The analysis of 15 PES samples for the FCM market revealed the presence of five different PCAs and 11 different polyols (main monomers, co-monomers, non-intentionally added substances (NIAS)) showing the wide variety of monomers in modern PESs. The presented method provides a useful tool for commercial, state and research laboratories as well as for producers and distributors facing the task of FCM risk assessment. It can be applied for the identification and quantification of migrating monomers and the prediction of oligomer compositions from the identified monomers, respectively.

History

Usage metrics

    Food Additives & Contaminants: Part A

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC