figshare
Browse
am6b08374_si_005.avi (175.72 kB)

Poly(vinyl alcohol)–Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors

Download (175.72 kB)
media
posted on 2016-09-20, 00:00 authored by Ya-Nan Chen, Lufang Peng, Tianqi Liu, Yaxin Wang, Shengjie Shi, Huiliang Wang
Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly­(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA–TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the “permanent” cross-link and the weaker H-bonding between PVA chains as the “temporary” cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA–TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.

History