figshare
Browse
tigr_a_1375438_sm5876.docx (59.02 kB)

Petrogenesis of Jurassic granitoids in the west central Lhasa subterrane, Tibet, China: the Geji example

Download (59.02 kB)
journal contribution
posted on 2017-09-14, 06:50 authored by Yong Wang, Juxing Tang, Liqiang Wang, Jilin Duan, Wangxiu Danzhen, Shen Li, Zhuang Li

The Jurassic magmatic and volcanic rocks are widespread along the west central Lhasa subterrane. However, the petrogenesis of these rocks is poorly understood because of lacking high-quality geochronology and geochemical data. Here, we present new zircon U–Pb age and Hf isotopic data, whole-rock geochemical and Sr–Nd–Pb isotopic data for the Songduole and Qiangnong plutons in Geji area. LA-ICP-MS dating of zircon yield crystallization ages of 172.1 ± 1.9 and 155.9 ± 1.2 Ma for the Songduole and Qiangnong plutons, respectively. Geochemically, Songduole and Qiangnong granodiorite are characterized by high MgO (2.63–3.49 wt%), high Mg# (49–50), and low TiO2 (0.48–0.57 wt%). Besides, all rocks show metaluminous, calc-alkaline signatures, with strong depletion of Nb, Ta, and Ti, enrichment of large-ion lithophile (e.g. Rb, Th, K), and a negative correlation between SiO2 and P2O5. All these features are indicative of arc-related I-type magmatism. Five samples from the Songduole granodiorite have whole rock (87Sr/86Sr)i of 0.71207–0.71257, εNd(t) values of −15.1 to −13.9, zircon εHf(t) values of −17.4 to −10.5, (206Pb/204Pb)t ratios of 18.402–18.854, (207Pb/204Pb)t ratios of 15.660–15.736, and (208Pb/204Pb)t ratios of 38.436–39.208. Samples from the Qiangnong granodiorite have (87Sr/86Sr)i of 0.71230–0.71252, εNd(t) values of −15.1 to −14.2, zircon εHf(t) values of −12.6 to −6.4, (206Pb/204Pb)t ratios of 18.688–18.766, (207Pb/204Pb)t ratios of 15.696–15.717, and (208Pb/204Pb)t ratios of 38.546–39.083. These geochemical signatures indicate that the two plutons most likely originated from partial melting of the ancient Lhasa lower crust with obvious inputs of mantle-derived melts. Combined with regional geology, our results indicate that the Jurassic magmatism in the west central Lhasa subterrane most likely resulted from the southward subduction of the Bangong Ocean lithosphere beneath the central Lhasa terrane.

Funding

This research was supported by grants from the Program of the China Geological Survey: [Grant Number DD20160026] and the National Natural Science Foundation of China: [Grant Number 41403040].

History