Numerical Methods for Heath-Jarrow-Morton Model of Interest Rates

2012-06-14T08:36:59Z (GMT) by Maria Krivko
The celebrated HJM framework models the evolution of the term structure of interest rates through the dynamics of the forward rate curve. These dynamics are described by a multifactor infinite-dimensional stochastic equation with the entire forward rate curve as state variable. Under no-arbitrage conditions, the HJM model is fully characterized by specifying forward rate volatility functions and the initial forward curve. In short, it can be described as a unifying framework with one of its most striking features being the generality: any arbitrage-free interest rate model driven by Brownian motion can be described as a special case of the HJM model. The HJM model has closed-form solutions only for some special cases of volatility, and valuations under the HJM framework usually require a numerical approximation. We propose and analyze numerical methods for the HJM model. To construct the methods, we first discretize the infinite-dimensional HJM equation in maturity time variable using quadrature rules for approximating the arbitrage-free drift. This results in a finite-dimensional system of stochastic differential equations (SDEs) which we approximate in the weak and mean-square sense. The proposed numerical algorithms are highly computationally efficient due to the use of high-order quadrature rules which allow us to take relatively large discretization steps in the maturity time without affecting overall accuracy of the algorithms. They also have a high degree of flexibility and allow to choose appropriate approximations in maturity and calendar times separately. Convergence theorems for the methods are proved. Results of some numerical experiments with European-type interest rate derivatives are presented.




All Rights Reserved