figshare
Browse
tmph_a_1447152_sm9167.docx (24.4 MB)

Multiscale modelling strategies and experimental insights for the solvation of cellulose and hemicellulose in ionic liquids

Download (24.4 MB)
journal contribution
posted on 2018-03-15, 15:50 authored by Mood Mohan, Pasumarthi Viswanath, Tamal Banerjee, Vaibhav V. Goud

The present study investigates the dissolution behaviour of cellulose and hemicellulose in potential ionic liquids (ILs) using both the quantum chemical and experimental validation. For converging upon the recommended IL, 1428 ILs consisting of 42 cations and 34 anions were studied with the conductor like screening model for real solvents (COSMO-RS) model. Based on the infinite dilution activity coefficient of the components in IL, the selected anions and cations were visualised by observing their interactions with cellulose and hemicellulose using interaction energies, natural bonding orbital analysis and molecular dynamics simulations. The dissolution order of cellulose and hemicellulose in ILs was primarily determined by the evaluation of hydrogen bonds between the oxygen atom of anion and hydroxyl proton of cellulose/hemicellulose. From this discernible fact, the anion of the IL was observed to play a leading role in the solvation process as compared to the cation. Eventually, acetate [OAc] anion and 1-ethyl-3-methylimidazolium [EMIM]+ cation were found to be good candidates for the dissolution of cellulose and hemicellulose. This was further confirmed by the measurement of solid-liquid equilibria with cellulose and hemicellulose. The regenerated cellulose powder was then characterised by Fourier transform spectroscopy(FTIR), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA).

History