figshare
Browse
uasa_a_1549050_sm6205.zip (565.81 kB)

Matched Learning for Optimizing Individualized Treatment Strategies Using Electronic Health Records

Download (565.81 kB)
Version 2 2021-09-29, 14:05
Version 1 2018-12-13, 14:31
dataset
posted on 2021-09-29, 14:05 authored by Peng Wu, Donglin Zeng, Yuanjia Wang

Current guidelines for treatment decision making largely rely on data from randomized controlled trials (RCTs) studying average treatment effects. They may be inadequate to make individualized treatment decisions in real-world settings. Large-scale electronic health records (EHR) provide opportunities to fulfill the goals of personalized medicine and learn individualized treatment rules (ITRs) depending on patient-specific characteristics from real-world patient data. In this work, we tackle challenges with EHRs and propose a machine learning approach based on matching (M-learning) to estimate optimal ITRs from EHRs. This new learning method performs matching instead of inverse probability weighting as commonly used in many existing methods for estimating ITRs to more accurately assess individuals’ treatment responses to alternative treatments and alleviate confounding. Matching-based value functions are proposed to compare matched pairs under a unified framework, where various types of outcomes for measuring treatment response (including continuous, ordinal, and discrete outcomes) can easily be accommodated. We establish the Fisher consistency and convergence rate of M-learning. Through extensive simulation studies, we show that M-learning outperforms existing methods when propensity scores are misspecified or when unmeasured confounders are present in certain scenarios. Lastly, we apply M-learning to estimate optimal personalized second-line treatments for type 2 diabetes patients to achieve better glycemic control or reduce major complications using EHRs from New York Presbyterian Hospital. Supplementary materials for this article are available online.

History

Usage metrics

    Journal of the American Statistical Association

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC