figshare
Browse
KAxis_otu_table_1973.csv (1.16 MB)

KAxis_otu_table_1973.csv

Download (1.16 MB)
dataset
posted on 2018-10-04, 01:15 authored by Laurence ClarkeLaurence Clarke, Andrew BissettAndrew Bissett, Sophie Bestley, Bruce E. Deagle

Sampling

Samples were collected on board the RSV Aurora Australis between 22 January and 17 February 2016. The cruise surveyed the region south of the Kerguelen Plateau including the Princess Elizabeth Trough and BANZARE Bank in a series of eight transects covering 8165 km. Plankton communities were collected at 45 conductivity temperature depth (CTD) stations and seven additional underway stations, with biological replicates collected at two stations (52 independent sites). Surface water was sampled from 4 ± 2 m depth using the uncontaminated seawater line. Deep Chlorophyll Maximum (DCM, 10-74 m) water samples were obtained using 10 L Niskin bottles mounted on a Seabird 911+ CTD. Plankton communities were size-fractionated by sequentially filtering 10 L seawater through 25 mm 20 µm (nylon) and 5 µm filters (PVDF), and 0.45 µm Sterivex filters (PVDF). Filters were stored frozen at -80 °C.


DNA extraction and high-throughput sequencing

DNA was extracted from half of each filter using the MoBio PowerSoil DNA Isolation kit at the Australian Genome Research Facility (AGRF, Adelaide, Australia; http://www.agrf.org.au). The V4 region of the 18S rDNA (approximately 380 bp excluding primers) was PCR-amplified using universal eukaryotic primers from all extracts and sequenced on an Illumina MiSeq v2 (2 x 250 bp paired-end) following the Ocean Sampling Day protocol (Piredda et al. 2017). Amplicon library preparation and high-throughput sequencing were carried out at the Ramaciotti Centre for Genomics (Sydney, Australia).


Sequence analysis, OTU picking and assignment followed the Biomes of Australian Soil Environments (BASE) workflow (Bissett et al. 2016). Taxonomy was assigned to OTUs based on the PR2 database using the ‘classify.seqs’ command in mothur version 1.31.2 with default settings and a bootstrap cut-off of 60%. OTUs representing any terrestrial contaminants (e.g. human) and samples with low sequencing coverage (<7000 reads) were removed from the dataset.


The date of sea ice melt for each station was estimated from daily SSM/I-derived sea-ice spatial concentration from the National Snow and Ice Data Centre (NSIDC) at 25 x 25 km resolution. Days since melt was considered to be the number of days between the date on which sea ice concentration first fell below 15% and the date of sampling.

Other environmental variables included are in situ chlorophyll a, as an indicator of biological production, and near-surface salinity (mean over the upper 10 m) as an indicator for recent sea ice melt. Both environmental measurements were taken from the associated CTD seawater samples. The surface chlorophyll a in seawater (1-2 L) collected in Niskin bottles was analysed by high performance liquid chromatography (HPLC, provided by Karen Westwood & Imojen Pearce, Australian Antarctic Division, doi:10.4225/15/5a94c701b98a8).

Funding

Australian Antarctic Science Projects AAS-4344 and AAS-4313

History

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC