figshare
Browse
2014JORDANESPhD.pdf (5.08 MB)

Investigation into the Regulation and Interactions of Myocyte Stress 1 protein

Download (5.08 MB)
thesis
posted on 2015-07-09, 08:47 authored by Eva Simone Jordan
Myocyte stress 1 (MS1) also known as Striated Muscle Activator of Rho Signalling (STARS) and Actin-binding Rho activating protein is a stress responsive, muscle specific protein expressed in cardiac, skeletal and smooth muscle. MS1 was first observed to increase in mRNA levels during early states of pressure overload induced left ventricular hypertrophy, making MS1 sensitive to extracellular stress. MS1 is highly involved in actin dynamics, where polymerization of actin leads to the regulation of the myocardin related transcription factor-A and the serum response factor (MRTF-SRF). The SRF pathway plays a critical role in the regulation of the skeletal muscle. While in the heart, MS1 is thought to be implicated in hypertrophic signalling and cardiac remodelling. Previous studies in the lab have shown that MS1 increased in mRNA levels during simulated ischaemia/reperfusion injury but levels were attenuated with the addition of JNK inhibitor SP600125 during simulated ischaemia/reperfusion injury. Although we know MS1 is involved in actin dynamics due to its ability to bind actin at the C-terminal as a result of actin binding domains (located between 234-375 a.a) and also bind actin binding proteins ABLIM-2 and 3, there is limited information on how MS1 becomes upregulated and its specific function. In this study we wanted to investigate the effect of various stimuli on MS1 promoter activation with the use of luciferase reporter assays. The MS1 promoter was responsive to sorbitol induced osmotic stress, oxidative stress by serum deprivation and hypertrophic agonist phenylephrine. All of these are well known activators of the stress activated protein kinases (SAPKs); JNK and p38. There may be a link between MAPK activation and MS1 regulation. Investigation of other interacting partners of MS1 was proposed to give some insight into the function of MS1. Binding assays using purified MS1 fragments were used to look at potential interactions in the heart. Interestingly, novel myofibrillar proteins were pulled out of heart extract and identified by mass spectrometry as Myosin-6, troponin I, troponin T, α-tropomyosin, myosin LC2 and actin. We observed potential phosphorylation sites, located within the N-terminus of MS1. In vitro kinase assays using activated JNK, p38 and ERK, allowed for phosphorylation of MS1. Three novel phosphorylation sites Thr24, Thr62 and Ser77 were identified by mass spectrometry. Immunofluorescence studies were used to determine whether phosphorylation alters MS1 subcelluar distribution or interaction with actin. Co-localisation was observed between MS1 and HA-JNK at the cell membrane where there was evidence of membrane ruffling and actin stress fibres present at the periphery. All of these findings in this study are novel and imply that MS1 may be involved in the MAPK pathway and also play critical roles in contractile function, muscle development and cell motility, where phosphorylation may be responsible for its ability to interact with myofibrillar proteins.

History

Supervisor(s)

Prigent, Sally

Date of award

2015-05-01

Author affiliation

Department of Biochemistry

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Notes

The file associated with this record is under embargo for 12 months from the date of award. To consult the hard bound thesis please search the library catalog.

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC