figshare
Browse
tcsb_a_1198928_sm2437.docx (1.11 MB)

Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures

Download (1.11 MB)
journal contribution
posted on 2016-06-22, 11:58 authored by S. S. Mayakaduwa, Meththika Vithanage, Anurudda Karunarathna, Dinesh Mohan, Yong Sik Ok

Biochars showed a potential as adsorbents for organic contaminants, however, have not been tested for carbofuran, which has been detected frequently in water. This study provides evidences for the use of infused tea residue derived biochar for carbofuran removal. Biochars were produced at 300, 500 and 700 °C by slow pyrolysis and were characterized by proximate and ultimate analysis, FT-IR, SEM, BET and pore size distribution. Pyrolysis temperature showed a pronounced effect on biochar properties. The maximum carbofuran removal was achieved at pH 5. Freundlich and Temkin models best fit the equilibrium data. Biochars produced at 700 °C showed the highest sorption intensity. The adsorption process was likely to be a favorable chemisorption process with electrostatic interactions between carbofuran molecules and biochar surface. Acid-base interactions, electrophilic addition reactions and amide bond formations are the possible mechanisms of carbofuran adsorption. Overall, biochars prepared from tea waste can be utilized as effective adsorbents for removal of aqueous carbofuran.

History