Hydrothermal Fabrication of MnCO<sub>3</sub>@rGO Composite as an Anode Material for High-Performance Lithium Ion Batteries

The layer structure of graphene or reduced graphene oxide (rGO) opens an avenue for the development of advanced functional materials. In this paper, a MnCO<sub>3</sub>@rGO composite (MGC) was fabricated by anchoring MnCO<sub>3</sub> nanoparticles (NPs) on rGO sheets in the hydrothermal reduction process of graphene oxide by using NaBH<sub>4</sub>. MnCO<sub>3</sub> NPs with an average diameter of 8–20 nm were anchored onto the surface of rGO. The layer structure of rGO was maintained in MGC. The MGC was employed as an anode active material for lithium ion batteries. Excellent performances were obtained with a high specific capacity up to 857 mA·h·g<sup>–1</sup> after 100 cycles. The various charging–discharging current rates of 0.2–5.0 C exhibited no clear negative effect on the recycling stability of the MGC. The enhanced structure stability and ion and electron conductivity of the MGC are responsible for the superior electrochemical properties.