Hilbert Space and Pseudo-Riemannian Space: The Common Base of Quantum Information

2017-08-13T09:15:59Z (GMT) by Васил Пенчев
Hilbert space underlying quantum mechanics and pseudo-Riemannian space underlying general relativity share a common base of quantum information. Hilbert space can be interpreted as the free variable of quantum information, and any point in it, being equivalent to a wave function (and thus, to a state of a quantum system), as a value of that variable of quantum information. In turn, pseudo-Riemannian space can be interpreted as the interaction of two or more quantities of quantum information and thus, as two or more entangled quantum systems. Consequently, one can distinguish local physical interactions describable by a single Hilbert space (or by any factorizable tensor product of such ones) and non-local physical interactions describable only by means by that Hilbert space, which cannot be factorized as any tensor product of the Hilbert spaces, by means of which one can describe the interacting quantum subsystems separately. Any interaction, which can be exhaustedly described in a single Hilbert space, such as the weak, strong, and electromagnetic one, is local in terms of quantum information. Any interaction, which cannot be described thus, is nonlocal in terms of quantum information. Any interaction, which is exhaustedly describable by pseudo-Riemannian space, such as gravity, is nonlocal in this sense. Consequently all known physical interaction can be described by a single geometrical base interpreting it in terms of quantum information.<br>