figshare
Browse
1/1
4 files

Biomarker Benchmark - GSE32646

Version 5 2016-03-17, 22:18
Version 4 2016-03-17, 21:39
Version 3 2016-02-23, 23:28
Version 2 2016-02-04, 22:02
Version 1 2016-02-02, 22:21
dataset
posted on 2016-03-17, 22:18 authored by Anna GuyerAnna Guyer, Stephen PiccoloStephen Piccolo

[NOTICE: This data set has been deprecated. Please see our new version of the data (and additional data sets) here: https://osf.io/mhk93 ]


"The purpose of the present study was to investigate the association of glutathione S-transferase P1 (GSTP1) expression with resistance to neoadjuvant paclitaxel followed by 5-fluorouracil/epirubicin/cyclophosphamide (P-FEC) in human breast cancers. The relationship of GSTP1 expression and GSTP1 promoter hypermethylation with intrinsic subtypes was also investigated. In this study, primary breast cancer patients (n = 123, stage II-III) treated with neoadjuvant P-FEC were analyzed. Tumor samples were obtained by vacuum-assisted core biopsy before P-FEC. GSTP1 expression was determined using immunohistochemistry, GSTP1 promoter methylation index (MI) using bisulfite methylation assay and intrinsic subtypes using DNA microarray. The pathological complete response (pCR) rate was significantly higher in GSTP1-negative tumors (80.0%) than GSTP1-positive tumors (30.6%) (P = 0.009) among estrogen receptor (ER)-negative tumors but not among ER-positive tumors (P = 0.267). Multivariate analysis showed that GSTP1 was the only predictive factor for pCR (P = 0.013) among ER-negative tumors. Luminal A, luminal B and HER2-enriched tumors showed a significantly lower GSTP1 positivity than basal-like tumors (P = 0.002, P < 0.001 and P = 0.009, respectively), while luminal A, luminal B and HER2-enriched tumors showed a higher GSTP1 MI than basal-like tumors (P = 0.076, P < 0.001 and P < 0.001, respectively). In conclusion, these results suggest the possibility that GSTP1 expression can predict pathological response to P-FEC in ER-negative tumors but not in ER-positive tumors. Additionally, GSTP1 promoter hypermethylation might be implicated more importantly in the pathogenesis of luminal A, luminal B and HER2-enriched tumors than basal-like tumors."

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32646

We have included gene-expression data, the outcome (class) being predicted, and any clinical covariates. When gene-expression data were processed in multiple batches, we have provided batch information. Each data set is organized into a file set, where each contains all pertinent files for an individual dataset. The gene expression files have been normalized using both the SCAN and UPC methods using the SCAN.UPC package in Bioconductor (https://www.bioconductor.org/packages/release/bioc/html/SCAN.UPC.html). We summarized the data at the gene level using the BrainArray resource (http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/20.0.0/ensg.asp). We used Ensembl identifiers. The class, clinical, and batch data were hand curated to ensure consistency ("tidy data" formatting). In addition, the data files have been formatted to be imported easily into the ML-Flex machine learning package (http://mlflex.sourceforge.net/).

History

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC