figshare
Browse
kaup_a_1405187_sm5676.doc (1.59 MB)

Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1

Download (1.59 MB)
journal contribution
posted on 2017-11-23, 09:16 authored by Peng Sun, Shumin Zhang, Xiaodong Qin, Xingni Chang, Xiaorui Cui, Haitao Li, Shuaijun Zhang, Huanhuan Gao, Penghua Wang, Zhidong Zhang, Jianxun Luo, Zhiyong Li

Foot-and-mouth disease virus (FMDV) can result in economical destruction of cloven-hoofed animals. FMDV infection has been reported to induce macroautophagy/autophagy; however, the precise molecular mechanisms of autophagy induction and effect of FMDV capsid protein on autophagy remain unknown. In the present study, we report that FMDV infection induced a complete autophagy process in the natural host cells of FMDV, and inhibition of autophagy significantly decreased FMDV production, suggesting that FMDV-induced autophagy facilitates viral replication. We found that the EIF2S1-ATF4 pathway was activated and the AKT-MTOR signaling pathway was inhibited by FMDV infection. We also observed that ultraviolet (UV)-inactivated FMDV can induce autophagy. Importantly, our work provides the first piece of evidence that expression of FMDV capsid protein VP2 can induce autophagy through the EIF2S1-ATF4-AKT-MTOR cascade, and we found that VP2 interacted with HSPB1 (heat shock protein family B [small] member 1) and activated the EIF2S1-ATF4 pathway, resulting in autophagy and enhanced FMDV replication. In addition, we show that VP2 induced autophagy in a variety of mammalian cell lines and decreased aggregates of a model mutant HTT (huntingtin) polyglutamine expansion protein (HTT103Q). Overall, our results demonstrate that FMDV capsid protein VP2 induces autophagy through interaction with HSPB1 and activation of the EIF2S1-ATF4 pathway.

Funding

This work was supported by National Natural Science Foundation of China (NSFC) [grant number 31572522, 31201943]; DH | National Institute for Health Research (NHS) [grant number AI103807, AI099625]; Fundamental Research Funds of the Chinese Academy of Agricultural Sciences [grant number 1610312016026].

History

Usage metrics

    Autophagy

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC