figshare
Browse
ja6b10114_si_001.pdf (1.9 MB)

Experimental Demonstration of an Electride as a 2D Material

Download (1.9 MB)
journal contribution
posted on 2016-11-16, 00:00 authored by Daniel L. Druffel, Kaci L. Kuntz, Adam H. Woomer, Francis M. Alcorn, Jun Hu, Carrie L. Donley, Scott C. Warren
Because of their loosely bound electrons, electrides offer physical properties useful in chemical synthesis and electronics. For these applications and others, nanosized electrides offer advantages, but to-date no electride has been synthesized as a nanomaterial. We demonstrate experimentally that Ca2N, a layered electride in which layers of atoms are separated by layers of a 2D electron gas (2DEG), can be exfoliated into two-dimensional (2D) nanosheets using liquid exfoliation. The 2D flakes are stable in a nitrogen atmosphere or in select organic solvents for at least one month. Electron microscopy and elemental analysis reveal that the 2D flakes retain the crystal structure and stoichiometry of the parent 3D Ca2N. In addition, the 2D flakes exhibit metallic character and an optical response that agrees with DFT calculations. Together these findings suggest that the 2DEG is preserved in the 2D material. With this work, we bring electrides into the nanoregime and experimentally demonstrate a 2D electride, Ca2N.

History