figshare
Browse
rsbl20160665_si_001.docx (230.03 kB)

Electronic supplementary material (text) from Parallel evolution of mound-building and grass-feeding in Australian nasute termites

Download (461.78 kB)
Version 2 2017-02-15, 07:15
Version 1 2017-02-08, 14:21
journal contribution
posted on 2017-02-15, 07:15 authored by Daej A. Arab, Anna Namyatova, Theodore A. Evans, Stephen L. Cameron, David K. Yeates, Simon Y. W. Ho, Nathan Lo
Termite mounds built by representatives of the family Termitidae are among the most spectacular constructions in the animal kingdom, reaching 6–8 m in height and housing millions of individuals. Although functional aspects of these structures are well studied, their evolutionary origins remain poorly understood. Australian representatives of the termitid subfamily Nasutitermitinae display a wide variety of nesting habits, making them an ideal group for investigating the evolution of mound building. Because they feed on a variety of substrates, they also provide an opportunity to illuminate the evolution of termite diets. Here, we investigate the evolution of termitid mound building and diet, through a comprehensive molecular phylogenetic analysis of Australian Nasutitermitinae. Molecular dating analysis indicates that the subfamily has colonized Australia on three occasions over the last approximately 20 Myr. Ancestral-state reconstruction showed that mound building arose on multiple occasions and from diverse ancestral nesting habits, including arboreal and wood or soil nesting. Grass feeding appears to have evolved from wood feeding via ancestors that fed on both wood and leaf litter. Our results underscore the adaptability of termites to ancient environmental change, and provide novel examples of parallel evolution of extended phenotypes.

History

Usage metrics

    Biology Letters

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC