figshare
Browse
gcoo_a_1196291_sm3319.docx (646.11 kB)

Different two-dimensional metal-organic frameworks through ligand modification

Download (646.11 kB)
journal contribution
posted on 2016-07-19, 22:36 authored by Jian Zhang, Bin Wang, Ming Li, Min-Jian Zhao, Ya-Bo Xie, Jian-Rong Li

Through ligand modification, we have replaced the central benzene ring of H2TDBA ([1,1′:3′,1″-terphenyl]-4,4″-dicarboxylic acid) with the pyridine structurally related ligand H2PDDA (4,4′-(pyridine-2,6-diyl)dibenzoic acid), which makes the central pyridine ring of H2PDDA more coplanar with two benzene rings on both sides of the ligand. The modification results in a dramatically different linkage configuration, thereby allowing structural changes to the metal-organic frameworks (MOFs). Two 2-D MOFs, [Cu(TDBA)(DMA)2]·H2O (BUT-221, DMA = N,N-dimethylacetamide), and [Cu3(PDDA)3(DMA)2(H2O)]·5H2O (BUT-223) have been synthesized through reactions of two ditopic carboxylate ligands with Cu(NO3)2·3H2O under solvothermal conditions, and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis and infrared spectroscopy. Topological analysis shows that BUT-221 is a twofold parallel interpenetrating 44 2-D network with a skl topology, while BUT-223 is a 2-D network with a kgm topology.

History