figshare
Browse
cbps_a_1192280_sm6616.docx (75.17 kB)

Dietary conjugated linoleic acid affects blood parameters, liver morphology and expression of selected hepatic genes in laying hens

Download (75.17 kB)
journal contribution
posted on 2016-06-08, 12:59 authored by A. A. Koronowicz, P. Banks, B. Szymczyk, T. Leszczyńska, A. Master, E. Piasna, W. Szczepański, D. Domagała, A. Kopeć, E. Piątkowska, P. Laidler

The objective of this research were to investigate the effect of a conjugated linoleic acid (CLA)-enriched diet on Isa Brown laying hen health status and to provide a comprehensive analysis of changes in blood parameters, liver morphology and selected hepatic gene expression.

Hens were allocated to the control and experimental group (diet enriched with 0.75% CLA) for a total period of 4 m. At the end of the experiment half of the hens from each group were slaughtered for analyses. The remaining hens were transferred to an organic farm for the next 5 m and fed on the diet without CLA supplementation.

The CLA-enriched diet resulted in significant changes in blood and serum parameters; specifically, haematocrit (HCT), mean corpuscular volume (MCV) and white blood cells (WBC) count were decreased compared to the control. The total cholesterol (TC) was not significantly affected while the triacylglycerol’s (TG) concentration was elevated. The activity of alanine aminotransferase (ALT) was significantly increased in the CLA-supplemented group, while aspartate aminotransferase (AST) showed an increasing tendency. Liver biopsies showed pathological changes classified as non-alcoholic fatty liver disease (NAFLD). Additionally, the expression of hepatic genes involved in fatty acids synthesis (ME1, ACLY, ACC, FASN, SCD1), oxidation (CPT1α, PPARA), detoxification processes (Cytochrome P450, CYP, Flavin-containing monooxygenase, FMO3), oxidative stress (NOX4, XbP1) and inflammation (IL6, TNFα) were elevated. Cessation of CLA supplementation for 5 m of organic farming resulted in normalisation of blood and hepatic parameters to the levels observed in control hens.

The results of this study indicate that dietary CLA triggers an integrated stress response in laying hens and activates mechanisms involved in liver detoxification.

The objective of this research were to investigate the effect of a conjugated linoleic acid (CLA)-enriched diet on Isa Brown laying hen health status and to provide a comprehensive analysis of changes in blood parameters, liver morphology and selected hepatic gene expression.

Hens were allocated to the control and experimental group (diet enriched with 0.75% CLA) for a total period of 4 m. At the end of the experiment half of the hens from each group were slaughtered for analyses. The remaining hens were transferred to an organic farm for the next 5 m and fed on the diet without CLA supplementation.

The CLA-enriched diet resulted in significant changes in blood and serum parameters; specifically, haematocrit (HCT), mean corpuscular volume (MCV) and white blood cells (WBC) count were decreased compared to the control. The total cholesterol (TC) was not significantly affected while the triacylglycerol’s (TG) concentration was elevated. The activity of alanine aminotransferase (ALT) was significantly increased in the CLA-supplemented group, while aspartate aminotransferase (AST) showed an increasing tendency. Liver biopsies showed pathological changes classified as non-alcoholic fatty liver disease (NAFLD). Additionally, the expression of hepatic genes involved in fatty acids synthesis (ME1, ACLY, ACC, FASN, SCD1), oxidation (CPT1α, PPARA), detoxification processes (Cytochrome P450, CYP, Flavin-containing monooxygenase, FMO3), oxidative stress (NOX4, XbP1) and inflammation (IL6, TNFα) were elevated. Cessation of CLA supplementation for 5 m of organic farming resulted in normalisation of blood and hepatic parameters to the levels observed in control hens.

The results of this study indicate that dietary CLA triggers an integrated stress response in laying hens and activates mechanisms involved in liver detoxification.

History