Determination of modulus of elasticity of wood depending on the inclination of fibers using acoustic tomography

<p></p><p>ABSTRACT The objectives of this work are to determine, from non-destructive tests, the modulus of elasticity as a function of the inclination of the wood fibers through an acoustic tomograph, to compare and discuss the application of six fault criteria adapted for non destructive tests and to modify the formulas for to determine the most suitable failure criteria for the proposed non-destructive test. To determine the most suitable failure criteria for the proposed non-destructive test. For this, 6 specimens of 150x15x4 cm of 6 species of wood were tested. An acoustic tomograph with eight transducers was used. These sensors are fixed and mechanically excited with a hammer. Each time a sensor is excited the others capture the time the mechanical wave took to arrive, then the speed is determined and the modulus of elasticity is calculated. The inclination of the fibers is determined from the angles formed by each transducer in relation to the direction thereof. The experimental results were compared with six theories of mechanical rupture criteria. It is concluded that it is possible to use the acoustic tomograph to determine the modulus of elasticity inclined to the fibers, with only one experimental test. All six mathematical models evaluated do not present statistical significance in their original format. With the modifications made in the models those that presented significance were only the models: hyperbolic, Karlsen and Hankinson, therefore they are the most indicated to estimate the values of the modulus of elasticity as a function of the inclination of the fibers.</p><p></p>