figshare
Browse
jp800846v_si_001.doc (2.02 MB)

Design and Synthesis of Nanostructured Porous SnO2 with High Surface Areas and Their Optical and Dielectric Properties

Download (2.02 MB)
journal contribution
posted on 2008-06-12, 00:00 authored by Debraj Chandra, Nillohit Mukherjee, Anup Mondal, Asim Bhaumik
A new structure-directing agent, hexadecyl-2-pyridinyl-methylamine, L16, was prepared through Schiff base condensation between pyridine-2-carboxaldehyde and hexadecylamine followed by reduction of the imine with NaBH4. Mesoporous and supermicroporous tin oxide particles with crystalline pore walls were obtained through a low-temperature sol–gel synthesis process by using an anionic surfactant, sodium dodecylsulfate, and hexadecyl-2-pyridinyl-methylamine, respectively, as templates. Powder X-ray diffraction, transmission electron microscopy−energy-dispersive spectrometry, field emission scanning electron microscopy, CHN chemical analysis, N2 sorption, 1H and 13C NMR, high-resolution mass spectrometry, Fourier transform infrared spectroscopy, and UV–vis absorption spectroscopic tools were employed to characterize L16 and nanostructured SnO2 materials. X-ray diffraction and transmission electron microscopy image analyses suggested that these porous materials have a wormhole-like disordered arrangement of pores, whereas the pore walls are crystalline. Nitrogen physisorption studies show high specific surface areas up to 555 m2 g−1, and the uniform nanoscale pore size distribution ranged from supermicropore to mesopores for these materials. These SnO2 materials showed drastic reduction of dielectrics with the induction of porosity vis-à-vis bulk SnO2. These unique optical and electrical properties of porous SnO2 materials over bulk SnO2 could be attributed to the quantum confinement effect.

History