figshare
Browse
tx5b00145_si_001.pdf (105.34 kB)

Bayesian Network Inference Enables Unbiased Phenotypic Anchoring of Transcriptomic Responses to Cigarette Smoke in Humans

Download (105.34 kB)
journal contribution
posted on 2015-10-19, 00:00 authored by Danyel G. J. Jennen, Danitsja M. van Leeuwen, Diana M. Hendrickx, Ralph W. H. Gottschalk, Joost H. M. van Delft, Jos C. S. Kleinjans
Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study the effects of human exposure to, e.g., chemical carcinogens at the whole genome level, thus yielding broad-ranging molecular information on possible carcinogenic effects. Since genes do not operate individually but rather through concerted interactions, analyzing and visualizing networks of genes should provide important mechanistic information, especially upon connecting them to functional parameters, such as those derived from measurements of biomarkers for exposure and carcinogenic risk. Conventional methods such as hierarchical clustering and correlation analyses are frequently used to address these complex interactions but are limited as they do not provide directional causal dependence relationships. Therefore, our aim was to apply Bayesian network inference with the purpose of phenotypic anchoring of modified gene expressions. We investigated a use case on transcriptomic responses to cigarette smoking in humans, in association with plasma cotinine levels as biomarkers of exposure and aromatic DNA-adducts in blood cells as biomarkers of carcinogenic risk. Many of the genes that appear in the Bayesian networks surrounding plasma cotinine, and to a lesser extent around aromatic DNA-adducts, hold biologically relevant functions in inducing severe adverse effects of smoking. In conclusion, this study shows that Bayesian network inference enables unbiased phenotypic anchoring of transcriptomics responses. Furthermore, in all inferred Bayesian networks several dependencies are found which point to known but also to new relationships between the expression of specific genes, cigarette smoke exposure, DNA damaging-effects, and smoking-related diseases, in particular associated with apoptosis, DNA repair, and tumor suppression, as well as with autoimmunity.

History