figshare
Browse
1/1
4 files

An evaluation scheme for assessing the effectiveness of intersection movement assist (IMA) on improving traffic safety

Version 2 2017-10-23, 20:23
Version 1 2017-08-16, 10:01
dataset
posted on 2017-10-23, 20:23 authored by Kun-Feng Wu, Muhammad Nashir Ardiansyah, Wei-Jyun Ye

Objective: Intersection movement assist (IMA) has been recognized as one of the prominent countermeasures to reduce angle crashes at intersections, which constitute 22% of total crashes in the United States. Utilizing vehicle-based sensors, vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) communications, IMA offers extended vision to provide early warning for an imminent crash. However, most of IMA-related research implements their methods and strategies only in simulations, test tracks, or driving simulator studies that have quite a few assumptions and limitations and hence the effectiveness evaluations reported may not be transferable or comparable.

Methods: This study seeks to develop a generalized evaluation scheme that can be used not only to assess the effectiveness of IMA on improving traffic safety at intersections but to facilitate comparisons across similar studies. The proposed evaluation scheme utilizes the concepts of traffic conflict in terms of time-to-collision (TTC) as a crash surrogate. This approach avoids the issue of having insufficient crash frequency data for system evaluation. To measure the effectiveness of IMA on reducing traffic conflicts, a relative risk is calculated for comparing the risk of with/without using the IMA. As a proof-of-concept study, this study applied the proposed evaluation scheme and reported the effectiveness of IMA on improving traffic safety in a field operation test (FOT). Seven test scenarios were conducted at 4 intersections, and a total of 40 participants were recruited to use the IMA for 6 months.

Results: It was estimated that IMA users have 26% fewer conflicts with TTC less than 5 s and have 15% fewer conflicts with TTC less than 4 s. However, the results vary across different sites and different definitions of conflicts in terms of TTC.

Conclusions: Overall, IMA is promising to effectively reduce angle crashes related to sight obstruction and has potential to reduce not only crash frequency but crash severity.

Funding

The authors thank the Industrial Technology Research Institute for supporting this research.

History

Usage metrics

    Traffic Injury Prevention

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC