figshare
Browse

Using Hydrodynamic Focusing to Predictably Alter the Diameter of Synthetic Silk Fibers

Published on by Amanda Brooks
Spiders and silkworms provide a model of superior processing for multifunctional and highly versatile high-performance fibers. Mimicking the spider’s complex control system for chemical and mechanical gradients has remained an ongoing obstacle for synthetic silk production. In this study, the use of hydrodynamic fluid focusing within a 3D printed biomimetic spinning system to recapitulate the biological spinneret is explored and shown to produce predictable, small diameter fibers. Mirroring in silico fluid flow simulations using a hydrodynamic microfluidic spinning technique, we have developed a model correlating spinning rates, solution viscosity and fiber diameter outputs that will significantly advance the field of synthetic silk fiber production. The use of hydrodynamic focusing to produce controlled output fiber diameter simulates the natural silk spinning process and continues to build upon a 3D printed biomimetic spinning platform.

Cite items from this project

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review

cite all items

Share

email