Directed Iron-Catalyzed ortho-Alkylation and Arylation:

Towards the Stereoselective Catalytic Synthesis of 1,2-Disubstituted

Planar-Chiral Ferrocene Derivatives

David Schmiel and Holger Butenschön*

Institutfür Organische Chemie Leibniz Universität Hannover Schneiderberg 1B D-30167 Hannover Germany ORCID ID: 0000-0002-7689-1992 holger.butenschoen@mbox.oci.uni-hannover.de www.ak-butenschoen.uni-hannover.de

Supporting Information (SI)

Table of contents:

Diastereoselective <i>ortho</i> -lithiation of (<i>S</i>)- 26 (Figure S1)	S 2
¹ H and ¹³ C NMR spectra of new compounds (Figures S2-S25)	S 3
Enantioselective Phenylation of 1 and 5 (Figures 26-28)	S 26

Diastereoselective ortho-lithiation of (S)-26

(*S*)-**26** (52 mg, 0.12 mmol) was dissolved in THF (2 mL), TMEDA (60 µL, 0.4 mmol) was added, and the mixture was cooled to -78 °C. Then, *s*-BuLi [1.3 M in cyclohexane/hexane (92/8), 0.3 mL, 0.4 mmol) was added dropwise and the mixture was stirred at -78 °C for 2 h. After the addition of methyl iodide (20 µL, 0.4 mmol), the mixture was heated to 23 °C. Then, sat. aq. NH₄Cl (3 mL) was added. The aqueous layer was extracted with ethyl acetate (5 mL). The combined organic layers were washed with brine (5 mL), dried with MgSO₄, filtered and concentrated at reduced pressure. Column chromatography (25 x 5 cm; petroleum ether/ethyl acetate 2:1) affored (*S*,*S*_p)-**27** (18 mg, 0.04 mmol, 34 %, 1.7:1 *dr* determined by ¹H-NMR) as an orange oil.

Figure S1. ¹H NMR spectra of (*S*,*S*_p)-**27** and comparison of *ortho*-lithiation (red) with *ortho*-C-H activation (blue)

Figure S2. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-(8-Quinolinyl)-2-benzyl-

S 3

Figure S3. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-(8-Quinolinyl)-2-phenyl-

ferrocenoylamide (rac-3) in CDCl₃

Figure S4. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-[2-(1-Benzyl-1*H*-1,2,3-triazol-4-yl)-propan-2-yl]-2-phenylferrocenoylamide (*rac*-**6**) in CDCl₃

Figure S5. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-[2-(1-Benzyl-1*H*-1,2,3-

triazol-4-yl)-propan-2-yl]-2,5-diphenylferrocenoylamide (7) in CDCl₃

Figure S6. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-[2-(2-Pyridyl)propan-2-

yl]-ferrocenoylamide (8) in CDCl₃

Figure S7. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-[2-(2-Pyridyl)propan-2-

yl]-2-phenylferrocenoylamide (rac-9) in CDCl₃

Figure S8. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-(8-Quinolinyl)-2-(4-methyl-phenyl)ferrocenoylamide (*rac*-**10**) in CDCl₃

Figure S9. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-(8-Quinolinyl)-2-(4-trifluoromethylphenyl)ferrocenoylamide (*rac*-**11**) in CDCl₃

Figure S11. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-(8-Quinolinyl)-2-(4-methoxy-phenyl)ferrocenoylamide (*rac*-**12**) in CDCl₃

Figure S12. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-[2-(1-Benzyl-1*H*-1,2,3-

triazol-4-yl)-propan-2-yl]-2-(4-methylphenyl)ferrocenoylamide (*rac*-13) in CDCl₃

S 13

Figure S13. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-[2-(1-Benzyl-1*H*-1,2,3-

triazol-4-yl)-propan-2-yl]-2-(4-trifluormethylphenyl)ferrocenoylamide (rac-14) in CDCl₃

Figure S16. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-[2-(1-Benzyl-1*H*-1,2,3-

triazol-4-yl)-propan-2-yl]-2-(4-methoxyphenyl)ferrocenoylamide (*rac*-**15**) in CDCl₃

Figure S17. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-(8-Quinolinyl)-2methylferrocenoylamide (*rac*-**18**) in CDCl₃

Figure S18. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *meso-N,N*'-Bis(8-quinolinyl)-1,1'-diferrocenoylamide (**20**) in CDCl₃

Figure S19. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*,*N*'-Bis(8-quinolinyl)-2-

triazol-4-yl)-propan-2-yl]-2-ethylferrocenoylamide (*rac*-**15**) in CDCl₃

Figure S20. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-[2-(1-Benzyl-1*H*-1,2,3-

Figure S21. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of *N*-[2-(1-Benzyl-1*H*-1,2,3-

triazol-4-yl)propan-2-yl]-2,5-dimethylferrocenoylamide (25) in CDCl₃

Figure S22. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of (*S*)-*N*-[2-(4-Benzyloxazolin-2-yl)-2-propanyl]ferrocenoylamide [(*S*)-**26**] in CDCl₃

Figure S23. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of (S, S_p) -N-[2-(4-Benzyl-2-

Figure S24. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of (*S*)-*N*-[2-(4-Benzyl-2-oxazolinyl)propan-2-yl]-2,5-dimethylferrocenoylamide [(*S*)-**28**] in CDCl₃

Figure S25. ¹H (400 MHz) and ¹³C (100.6 MHz) NMR Spectra of 2-(4-Methylphenyl)ferrocene-1-carbonitrile (*rac*-**30**) in CDCl₃

Enantioselective Phenylation of 1 and 5:

Table 3, entry 2; GP; **1** (90 mg, 0.25 mmol), $ZnBr_2 \cdot TMEDA$ (256 mg, 0.75 mmol), (*R*,*R*)-Chiraphos (16 mg, 0.04 mmol) and PhMgBr (3M in Et₂O, 0.5 mL, 1.5 mmol); column chromatography (25 x 2.5 cm, petroleum ether/ethyl acetate 6:1) afforded (+)-**3** (103 mg, 0.24 mmol, 95 %) as an orange oil.

 $[\alpha]_D{}^{20}$: +31.6 (c = 1.0, CHCl₃ for 43% *ee*). Analytical data: see *rac*-**3**. The enantiomeric excess was determined by HPLC with a Daicel Chiralcel OD-H column, hexane/2-propanol as eluent with a flow rate of 0.5 mL/min, λ = 254 nm, t(minor) = 30.72 min, t(major) = 36.63 min.

Table 3, entry 3; GP; **5** (86 mg, 0.2 mmol), $ZnBr_2 \cdot TMEDA TMEDA$ (205 mg, 0.6 mmol), (*R*,*R*)-Chiraphos (13 mg, 0.03 mmol) and PhMgBr (3M in Et₂O, 0.4 mL, 1.2 mmol); column chromatography (25 x 2.5 cm, petroleum ether/ethyl acetate 6:1) affored (+)-**6** (90 mg, 0.18 mmol, 89 %) as an orange solid.

 $[\alpha]_D{}^{20}$: +2.7 (*c* = 1.0, CHCl₃ for 46% *ee*). Analytical data: see *rac*-**6**. The enantiomeric excess was determined by HPLC with a Daicel Chiralcel OD-H column, hexane/2-propanol as eluent with a flow rate of 0.5 mL/min, λ = 254 nm, *t*(minor) = 48.22 min, *t*(major) = 54.48 min.

Figure S28. Chromatogram for *rac*-6:

Figure S29. Chromatogram for (+)-6:

Det 166 Results				
Time	Area	Area %	Height	Height %
48,217	23405155	27,17	179668	34,91
54,483	62731874	72,83	334987	65,09
Totals				
	86137029	100,00	514655	100,00