Directed Iron-Catalyzed ortho-Alkylation and Arylation:
Towards the Stereoselective Catalytic Synthesis of 1,2-Disubstituted
Planar-Chiral Ferrocene Derivatives
David Schmiel and Holger Butenschön*
Institutfür Organische Chemie
Leibniz Universität Hannover
Schneiderberg 1B
D-30167 Hannover
Germany
ORCID ID: 0000-0002-7689-1992
holger.butenschoen@mbox.oci.uni-hannover.de
www.ak-butenschoen.uni-hannover.de
Supporting Information (SI)
Table of contents:
Diastereoselective ortho-lithiation of (S)-26 (Figure S1) S 2
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds (Figures S2-S25) S 3
Enantioselective Phenylation of $\mathbf{1}$ and 5 (Figures 26-28) S 26

Diastereoselective ortho-lithiation of (S)-26

(S)-26 ($52 \mathrm{mg}, 0.12 \mathrm{mmol}$) was dissolved in THF (2 mL), TMEDA ($60 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) was added, and the mixture was cooled to $-78^{\circ} \mathrm{C}$. Then, s-BuLi $[1.3 \mathrm{M}$ in cyclohexane/hexane (92/8), $0.3 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was added dropwise and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h . After the addition of methyl iodide ($20 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$), the mixture was heated to 23 ${ }^{\circ} \mathrm{C}$. Then, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ was added. The aqueous layer was extracted with ethyl acetate (5 mL). The combined organic layers were washed with brine (5 mL), dried with MgSO_{4}, filtered and concentrated at reduced pressure. Column chromatography (25×5 cm ; petroleum ether/ethyl acetate 2:1) affored (S, S_{p})-27(18 mg, $0.04 \mathrm{mmol}, 34 \%, 1.7: 1$ $d r$ determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$) as an orange oil.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $\left(S, S_{\mathrm{p}}\right)-27$ and comparison of ortho-lithiation (red) with ortho-C-H activation (blue)

Figure S2. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N-(8-Quinolinyl)-2-benzylferrocenoylamide (rac-2) in [D6]acetone

[^0]Figure S3. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N-(8-Quinolinyl)-2-phenylferrocenoylamide (rac-3) in CDCl_{3}

Figure S4. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N-[2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-propan-2-yl]-2-phenylferrocenoylamide (rac-6) in CDCl_{3}

Figure S5. ${ }^{1 \mathrm{H}}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N -[2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-propan-2-yl]-2,5-diphenylferrocenoylamide (7) in CDCl_{3}

Figure S6. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N-[2-(2-Pyridyl)propan-2-yl]-ferrocenoylamide (8) in CDCl_{3}

[^1]Figure S7. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N-[2-(2-Pyridyl)propan-2-yl]-2-phenylferrocenoylamide (rac-9) in CDCl_{3}

Figure S8. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N -(8-Quinolinyl)-2-(4-methyl-phenyl)ferrocenoylamide (rac-10) in CDCl_{3}

Figure S9. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N-(8-Quinolinyl)-2-(4trifluoromethylphenyl)ferrocenoylamide (rac-11) in CDCl_{3}

Figure S10. ${ }^{19} \mathrm{~F}$ (376.5 MHz) NMR Spectrum of rac - $\mathbf{1 1}$ in CDCl_{3}

Figure S11. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N-(8-Quinolinyl)-2-(4-methoxy-phenyl)ferrocenoylamide ($\mathrm{rac}-12$) in CDCl_{3}

Figure S12. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N-[2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-propan-2-yl]-2-(4-methylphenyl)ferrocenoylamide (rac-13) in CDCl_{3}

rac-13

Figure S13. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N -[2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-propan-2-yl]-2-(4-trifluormethylphenyl)ferrocenoylamide (rac-14) in CDCl_{3}

Figure S15. ${ }^{19} \mathrm{~F}$ (376.5 MHz) NMR Spectrum of rac - $\mathbf{1 4}$ in CDCl_{3}

Figure S16. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N -[2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-propan-2-yl]-2-(4-methoxyphenyl)ferrocenoylamide (rac-15) in CDCl_{3}

Figure S17. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N -(8-Quinolinyl)-2methylferrocenoylamide (rac-18) in CDCl_{3}

Figure S18. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of meso-N,N'-Bis(8-quinolinyl)-1,1'-diferrocenoylamide (20) in CDCl_{3}

Figure S19. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N, N '-Bis(8-quinolinyl)-2-methyl-1,1'-diferrocenoylamide (rac-21) in CDCl_{3}

rac-21

$\underset{\circ}{\infty}$

$\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

Figure S20. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N-[2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-propan-2-yl]-2-ethylferrocenoylamide (rac-15) in CDCl_{3}

Figure S21. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of N-[2-(1-Benzyl-1H-1,2,3-triazol-4-yl)propan-2-yl]-2,5-dimethylferrocenoylamide (25) in CDCl_{3}

Figure S22. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of $(S)-N-[2-(4-$ Benzyloxazolin-2-yl)-2-propanyl]ferrocenoylamide [(S)-26] in CDCl_{3}

Figure S23. ${ }^{1 \mathrm{H}}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of $\left(S, S_{\mathrm{p}}\right)-N-[2-(4-$ Benzyl-2-oxazolinyl)propan-2-yl]-2-methylferrocenoylamide [(S,Sp)-27] in CDCl_{3}

[^2]Figure S24. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of $(S)-N-[2-(4-B e n z y l-2-$ oxazolinyl)propan-2-yl]-2,5-dimethylferrocenoylamide [(S)-28] in CDCl_{3}

Figure S25. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ NMR Spectra of 2-(4-Methylphenyl)ferrocene-1-carbonitrile (rac-30) in CDCl_{3}

[^3]
Enantioselective Phenylation of 1 and 5:

Table 3, entry 2; GP; $\mathbf{1}$ ($90 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{ZnBr}_{2} \cdot$ TMEDA ($256 \mathrm{mg}, 0.75 \mathrm{mmol}$), (R, R)Chiraphos ($16 \mathrm{mg}, 0.04 \mathrm{mmol}$) and $\mathrm{PhMgBr}\left(3 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 0.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$); column chromatography ($25 \times 2.5 \mathrm{~cm}$, petroleum ether/ethyl acetate 6:1) afforded (+) $\mathbf{- 3}$ (103 mg , $0.24 \mathrm{mmol}, 95 \%)$ as an orange oil.
$[\alpha]_{D^{20}}:+31.6\left(c=1.0, \mathrm{CHCl}_{3}\right.$ for $\left.43 \% \mathrm{ee}\right)$. Analytical data: see rac-3. The enantiomeric excess was determined by HPLC with a Daicel Chiralcel OD-H column, hexane/2-propanol as eluent with a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (minor) $=30.72 \mathrm{~min}, t$ (major) $=$ 36.63 min.

Figure S26. Chromatogram for rac-3

Det 166 Results

| Time | Arca | Arca \% | Height | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 28,950 | 100883888 | 48,46 | 799741 | 53,31 |
| 35,033 | 107313388 | 51,54 | 700569 | 46,69 |
| Totals | 208197276 | 100,00 | 1500310 | 100,00 |

Figure S27. Chromatogram for (+)-3

Det $\mathbf{1 6 6}$ Results				
Time	Area	Area \%	Height	Height \%
30,717	71431498	28,29	484423	32,98
36,633	181057742	71,71	984369	67,02
Totals	252489240	100,00	1468792	100,00

Table 3, entry 3; GP; 5 ($86 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{ZnBr}_{2} \cdot$ TMEDA TMEDA ($205 \mathrm{mg}, 0.6 \mathrm{mmol}$), (R, R)-Chiraphos ($13 \mathrm{mg}, 0.03 \mathrm{mmol}$) and $\mathrm{PhMgBr}\left(3 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}, 0.4 \mathrm{~mL}, 1.2 \mathrm{mmol}\right.$); column chromatography ($25 \times 2.5 \mathrm{~cm}$, petroleum ether/ethyl acetate 6:1) affored (+)-6 (90 mg, $0.18 \mathrm{mmol}, 89 \%)$ as an orange solid.
$[\alpha]_{\mathrm{D}}{ }^{20}:+2.7$ ($c=1.0, \mathrm{CHCl}_{3}$ for 46\% ee). Analytical data: see rac-6. The enantiomeric excess was determined by HPLC with a Daicel Chiralcel OD-H column, hexane/2-propanol as eluent with a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t$ (minor) $=48.22 \mathrm{~min}, t$ (major) $=54.48$ min.

Figure S28. Chromatogram for rac-6:

Det 166 Results

| Time | Arca | Area $\%$ | Height | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 49,483 | 33636439 | 50,18 | 239910 | 55,68 |
| 56,283 | 33398360 | 49,82 | 190950 | 44,32 |
| Totals | 67034799 | 100,00 | 430860 | 100,00 |

Figure S29. Chromatogram for (+)-6:

Det 166 Results

Time	Area	Area \%	Height	Height \%
48,217	23405155	27,17	179668	34,91
54,483	62731874	72,83	334987	65,09
Totals	86137029	100,00	514655	100,00

[^0]: $\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

[^1]: $\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$
 ppm

[^2]: $\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

[^3]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

