The Role of Biorelevant Dissolution Media in the Selection of Optimal Salt Forms of Oral Drugs: Maximising the Gastrointestinal Solubility and *In Vitro* Activity of the Antimicrobial Molecule, Clofazimine.

Pauric Bannigan^{1, 2}, Edel Durack^{1, 2}, Conor Madden^{1, 2}, Matteo Lusi¹ and Sarah P. Hudson^{1, 2}* ¹Department of Chemical Sciences, University of Limerick, Castletroy, Co. Limerick, Ireland. ²Synthesis and Solid State Pharmaceutical Centre, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland.

Biorelevant dissolution media, Supersaturating Drug Delivery Systems, Clofazimine, Drug Repurposing, Antimicrobial resistance,

TABLES:

Solid from	Bond observed and	peak position (1/cm)
	N _C ⁺ -H	C=N _C
CFZ F III	n/a	1626.5
CFZ.Sul	3299.8	1624.3 (br)
CFZ.Pho	3325.2 (br)	1620.9
CFZ.Cit	3323.9 (br)	1616.9
CFZ.Ace	3325.2 (br)	1621.4

Table S1: Summary of the peaks position for the key function groups in various CFZ solid forms from the FTIR spectra

Bond observed	R R R	R C H3C CH3	R C N CH CH3	R CH CH3	R N C'R"	R_N_C-R_ RR_
Solid form	Chemical shift (ppm)	Intermolecular distance** (A)	Chemical shift (ppm)	Intermolecular distance** (A)	Chemical shift (ppm)	Intermolecular distance** (A)
CFZFI*	49.4	1.465	149 - 151.4 (m)	1.293	149 - 151.4 (m)	1.311
CFZFII	48.7	1.457	149.4 - 151.6 (m)	1.298	149.4 - 151.6 (m)	1.302
CFZ F III	49	1.457	149.73	1.296	150.7	1.309
Citrate	48.84 - 46.46 (m), 45.47, 44.71	1.471	143.05, 141.65	1.328	151.08	1.324
Phosphate	48.21, 47.16	1.469	143.84	1.322	152.35 - 150.24 (m), 149.70	1.351
Sulphate	51.21, 48.23	1.462	144.26 - 142.46 (m)	1.322	150.96	1.320
Solution NMR: CFZ in CDCl ₃	49.4	n/a	150.4	n/a	151.1	n/a
CFZ from Gaussian 09 software (cal)	50.46	nía	152.12	nía	152.55	n/a
*taken from FI v **Calculated usi	esolved as DAKXUI0 ng Mercury software	*taken from FI resolved as DAKXU101 exhibits disorder in its isopropyl group. **Calculated using Mercury software from single crystal cif files (average take	*taken from FI resolved as DAKXU101 exhibits disorder in its isopropyl group. **Calculated using Mercury software from single crystal cif files (average taken for solid Z'numbers greater > 1)	r solid Z'numbers g	reater > 1)	

Table S2: Summary of bond lengths from crystal structures of CFZ solid forms and ¹³C chemical shifts of the same key functional groups in CPMAS ¹³C spectra for CFZ solid forms. The chemical shifts of the CFZ carbons from solution NMR and molecular modelling are also shown for comparison

FIGURES:

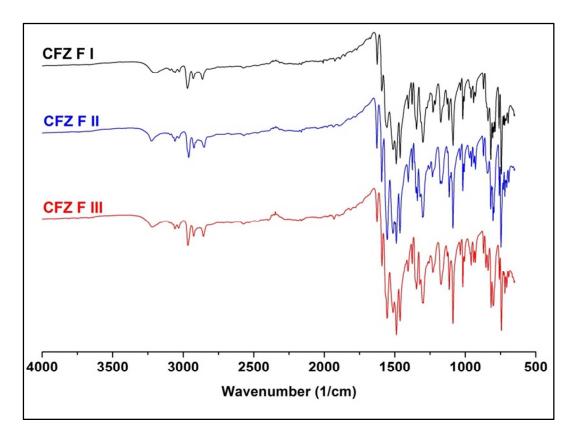


Figure S1: Comparison of the full FTIR spectra for the CFZ polymorphs F I, F II and F III.

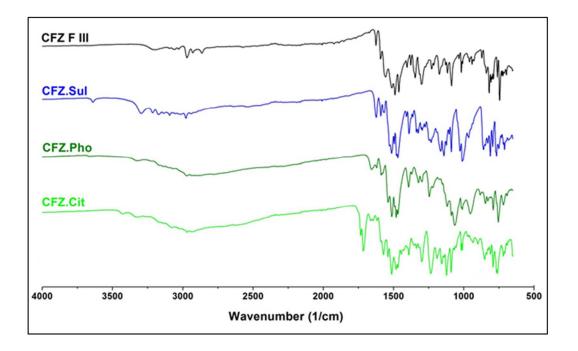
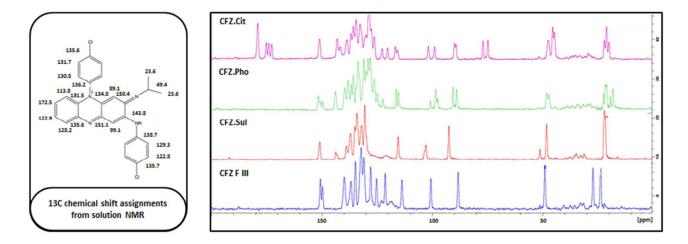



Figure S2: Comparison of the full FTIR spectra of the new CFZ salts with CFZ F III.

Figure S3: Left; Chemical structure of CFZ with ¹³C peaks assigned. Right; Comparison of full ¹³C CPMAS spectra obtained of acetate, citrate, phosphate, sulphate and CFZ F III, peaks corresponding to the secondary ketimine carbon (green) and the isopropyl carbon (blue) are highlighted.