Supplementary Information

Structural stability and evolution of medium-sized tantalum doped

boron clusters: A half-sandwich-structured TaB_{12}^{-} cluster

Bo Le Chen,[†] Wei Guo Sun,[†] Xiao Yu Kuang,^{*,†} Cheng Lu,^{*,‡,¶}

Xin Xin Xia,[†] Hong Xiao Shi[†] and George Maroulis^{*,§}

[†]Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China. E-mail: scu_kuang@163.com
[‡]Department of Physics, Nanyang Normal University, Nanyang 473061, China
[¶]Department of Physics and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States. E-mail: lucheng@calypso.cn
[§]Department of Chemistry, University of Patras, GR-26500 Patras, Greece. E-mail: maroulis@upatras.gr

Figure S1. Low-lying isomers of TaB_n (n = 10-20) clusters, along with the point group symmetry and relative energy (eV).

Figure S2. Low-lying isomers of TaB_n^- (n = 10-20) cluster, along with the point group symmetry and relative energy (eV).

Cluster	VDE	(eV)
	Theo.	Exp.
TaB_{10}^{-}	4.0024	4.04^{a}
TaB_{11}^{-}	3.4725	
TaB_{12}^{-}	3.2427	
TaB_{13}	4.0454	
TaB_{14}^{-}	3.8138	
TaB_{15}^{-}	3.3052	
TaB_{16}	3.8316	
TaB_{17}^{-}	3.6989	
TaB_{18}^{-}	3.6745	
TaB_{19}^{-}	3.9457	
TaB_{20}	3.0026	3.30^{b}
1		

 Table S1. Comparing calculated vertical detachment energy with available

experimental data.

^a Ref.1. ^b Ref.2.

п	NEC(Ta)	NEC(B)
10	$6S^{0.25}5d^{-3.8}6p^{0.33}6d^{0.02}$	$2S^{0.76-0.82}2p^{2.15-2.30}3p^{0.01-0.02}3d^{0.01}$
11	$6S^{0.24}5d^{3.90}6p^{0.47}7S^{0.01}6d^{0.02}$	$2S^{0.76\text{-}0.88}2p^{1.93\text{-}2.24}3p^{0.01}3d^{0.01}4p^{0.01}$
12	$6S^{0.19}5d^{3.76}6p^{0.34}6d^{0.04}$	$2S^{0.57 - 0.83} 2p^{2.18 - 2.40} 3p^{0.01 - 0.02} 3d^{0.01}$
13	$6S^{0.21}5d^{4.01}6p^{0.37}6d^{0.02}$	$2S^{0.62-0.88}2p^{2.01-2.45}3S^{0-0.01}3p^{0-0.01}3d^{0-0.01}4p^{0-0.01}$
14	$6S^{0.23}5d^{4.01}6p^{0.56}7S^{0.01}6d^{0.06}$	$2S^{0.69\text{-}0.84}2p^{1.82\text{-}2.49}3p^{0.01\text{-}0.02}3d^{-0.01}$
15	$6S^{0.20}5d^{3.94}6p^{0.59}7S^{0.01}6d^{0.05}$	$2S^{0.69\text{-}0.88}2p^{1.57\text{-}2.48}3p^{0\text{-}0.01}3d^{0\text{-}0.01}4p^{0\text{-}0.02}$
16	$6S^{0.20}5d^{4.49}6p^{0.69}7S^{0.02}6d^{0.13}$	$2S^{0.69-0.72}2p^{2.21-2.29}3p^{-0.02}3d^{0.01}$
17	$6S^{0.20}5d^{4.36}6p^{0.68}7S^{0.02}6d^{0.10}$	$2S^{0.66\text{-}0.87}2p^{1.79\text{-}2.48}3p^{0\text{-}0.02}3d^{0\text{-}0.01}4p^{0\text{-}0.02}$
18	$6S^{0.19}5d^{4.29}6p^{0.61}7S^{0.02}6d^{0.11}$	$2S^{0.71}2p^{2.25}3p^{0.02}3d^{0.01}$
19	$6S^{0.18}5d^{4.29}6p^{0.70}7S^{0.01}6d^{0.10}$	$2S^{0.65 \cdot 0.86} 2p^{2 \cdot 2.40} 3S^{0 \cdot 0.01} 3p^{0 \cdot 0.02} 3d^{0.01} 4p^{0 \cdot 0.02}$
20	$6\mathrm{S}^{0.19}\mathrm{5d}^{4.60}\mathrm{6p}^{0.80}\mathrm{7S}^{0.02}\mathrm{6d}^{0.13}$	$2S^{0.63 \cdot 0.72} 2p^{2.08 \cdot 2.42} 3S^{0 \cdot 0.01} 3p^{0.02} 3d^{0.01}$

Table S2. Natural electron configuration (NEC) of Ta and B atoms for the lowest-energy structures of TaB_n (n = 10-20) clusters.

Table S3. Natural electron configuration (NEC) of Ta and B atoms for the lowest-energy structures of TaB_n^- (n = 10-20) clusters.

п	NEC(Ta)	NEC(B)
10	$6S^{0.15}5d^{3.96}6p^{0.49}6d^{0.01}$	$2S^{0.87}2p^{2.25}3p^{0.01}3d^{0.01}$
11	$6\mathrm{S}^{0.22}\mathrm{5d}^{4.10}\mathrm{6p}^{0.48}\mathrm{7S}^{0.01}\mathrm{6d}^{0.03}$	$2S^{0.69\text{-}0.86}2p^{2.13\text{-}2.55}3p^{0.01\text{-}0.02}3d^{0.01}$
12	$6S^{0.19}5d^{3.88}6p^{0.35}6d^{0.04}$	$2S^{0.57\text{-}0.82}2p^{2.34\text{-}2.39}3p^{0\text{-}0.02}3d^{0.01}4p^{0\text{-}0.02}$
13	$6S^{0.21}5d^{4.11}6p^{0.42}6d^{0.02}$	$2S^{0.62-0.86}2p^{2.09-2.51}3S^{0-0.01}3p^{0.01-0.02}3d^{0-0.01}$
14	$6\mathrm{S}^{0.22}\mathrm{5d}^{4.08}\mathrm{6p}^{0.57}\mathrm{7S}^{0.01}\mathrm{6d}^{0.07}$	$2S^{0.70\text{-}0.84}2p^{1.92\text{-}2.53}3p^{0\text{-}0.01}3d^{0.01}4p^{0.01\text{-}0.02}$
15	$6S^{0.18}5d^{4.25}6p^{0.65}7S^{0.01}6d^{0.06}$	$2S^{0.72-0.83}2p^{1.60-2.54}3p^{0.01-0.02}3d^{0.01}$
16	$6\mathrm{S}^{0.19}\mathrm{5d}^{4.57}\mathrm{6p}^{0.65}\mathrm{7S}^{0.02}\mathrm{6d}^{0.13}$	$2S^{0.68\text{-}0.71}2p^{2.17\text{-}2.45}3p^{0.01\text{-}0.02}3d^{0.01}4p^{0.0.01}$
17	$6S^{0.19}5d^{4.38}6p^{0.73}7S^{0.02}6d^{0.11}$	$2S^{0.65-0.80}2p^{2.17-2.44}3S^{0-0.01}3p^{0.01-0.02}3d^{0.01}$
18	$6\mathrm{S}^{0.02}\mathrm{5d}^{4.31}\mathrm{6p}^{0.61}\mathrm{7S}^{0.18}\mathrm{6d}^{0.11}$	$2S^{0.68-0.75}2p^{2.17-2.38}3p^{0-0.01}3d^{0.01}4p^{0-0.02}$
19	$6S^{0.18}5d^{4.35}6p^{0.69}7S^{0.01}6d^{0.11}$	$2S^{0.62 \cdot 0.85} 2p^{2.14 \cdot 2.50} 3S^{0 \cdot 0.01} 3p^{0.02} 3d^{0.01}$
20	$6S^{0.01}5d^{4.67}6p^{0.82}7S^{0.19}6d^{0.13}$	$2S^{0.64\text{-}0.72}2p^{2.14\text{-}2.44}3S^{0\text{-}0.01}3p^{0\text{-}0.02}3d^{0.01}4p^{0\text{-}0.02}$

В	0.85303900	-0.49250200	-1.41605200
В	1.78448300	1.03027200	-0.64228100
В	-0.76616800	2.18820400	-0.41978700
В	0.00000000	0.98500400	-1.41605200
В	0.76616800	2.18820400	-0.41978700
В	-1.78448300	1.03027200	-0.64228100
В	-0.85303900	-0.49250200	-1.41605200
В	-2.27812400	-0.43058100	-0.41978700
В	2.27812400	-0.43058100	-0.41978700
В	1.51195600	-1.75762300	-0.41978700
В	-1.51195600	-1.75762300	-0.41978700
В	0.00000000	-2.06054400	-0.64228100
Та	0.00000000	0.00000000	0.59546000

Table S4. Cartesian coordinates of optimized lowest-energy structure of half-sandwich $\text{TaB}_{12}^{-}(C_{3\nu}, {}^{1}\text{A}_{1})$ cluster.

REFERENCES

1 Galeev, T. R.; Romanescu, C.; Li, W. L.; Wang, L. S.; Boldyrev, A. I. Observation of the Highest Coordination Number in Planar Species: Decacoordinated TaB_{10}^{-} and NbB_{10}^{-} Anions. *Angew. Chem. Int. Ed.* **2012**, *51*, 2101–2105.

2 Li, W. L.; Jian, T.; Chen, X.; Li, H. R.; Chen, T. T.; Luo, X. M.; Li, S. D.; Li, J.; Wang, L. S. Observation of a metal-centered B_2 -Ta B_{18}^- tubular molecular rotor and a perfect Ta B_{20}^- boron drum with the record coordination number of twenty. *Chem. Commun.* **2017**, *53*, 1587–1590.