Supplementary Information (SI)

Carbon Dots from a Single Source Exhibiting Tuneable Luminescent Colors through the Modification of Surface Functional Groups in ORMOSIL Films

Dipsikha Bhattacharya,[†] Manish Kumar Mishra,[†] and Goutam De*

Nano-Structured Materials Division, CSIR–Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India). E-mail: gde@cgcri.res.in.

Contents	Page no.
S1. Details of quantum yield (QY) measurements of Carbon Dots and films	Page S2
S2. Calculation method of life time values	Page S2
Table S1. Table representing the analysis of QYs of tricolored films	Page S3
Table S2. Table representing average life time values of three films	Page S3
Figure S1. The digital images of green emitting CDs under visible and UV light Figure S2. The digital images of CD-ORMOSIL sols at three different pHs under	Page S4
normal and UV light	Page S4
Figure S3. XRD pattern of purified CDs	Page S5
Figure S4. FT-IR spectra of solution CDs before and after purification	Page S5
Figure S5. Survey scan and high resolution XPS spectra of CDs	Page S6
Figure S6. Zeta potential study of purified green emitting CDs in different pHs	Page S7
Figure S7. Thickness values of three representative films by profilometric method	Page S7
Figure S8. Cross sectional FESEM image of film	Page S8
Figure S9. PL emission of CDs in solution at different pH values	Page S8
Figure S10. Excitation independent emissions of triluminous films	Page S9
Figure S11. Photo-stability study of representative film at 275 nm	Page S10
Figure S12. Decay lifetime spectra of CDs in ethanol	Page S10

S1. Quantum yield (QY) measurement

Relative quantum yield measurement of CDs was done with respect to 10^4 M quinine sulphate in 0.01N H₂SO₄ solution as a standard. In order to minimize re-absorption effect diluted CD solution was used for QY measurement. Relative QY was calculated using eq S1:

$$QY_{sample} = (F_{sample}/F_{ref})(A_{ref}/A_{absorbance})(n^2_{sample}/n^2_{ref}) \times QY_{ref}.$$
 S1

F ______ Integrated area under the PL emission curve.
A ______ Absorbance at excitation wavelength.
n ______ Refractive index of the sample
QY_{sample} ______ Quantum yield of the sample.
QY_{ref} ______ Quantum yield of the reference (here quinine sulphate).

S2. Calculation method of life time values

The PL decay kinetics can be clearly analysed using a multi-exponential decay function as shown in the equation S2.

$$I(t) = \sum \alpha_i \exp(-t/r_i) \qquad \dots \qquad S2$$

In our case, the solution CDs and GF as well as YF were fitted well in bi-exponential decay functions and for OF, the tri-exponential decay fitting has been used.

Sample name	Absorbance at excitation wavelength (275 nm)	Integrated emission area	Refractive index of the medium	Quantum yield (%)	
10 ⁻⁴ M standard quinine sulfate (in water)	0.0856	2559.25	(H ₂ O) = 1.33	54	
CDs in ethanol	0.0783	2251.18	1.36 (in ethanol)	55.27	
GF	0.109	1997.669	1.4621	36.13	
YF	0.1023	1142.28	1.4623	24.277	
OF	0.112	1061.84	1.4618 in silica glass (film)	17.82	

Table S1: Calculated quantum yield of three films with respect to 10⁻⁴ M standard quinine sulphate solution.

Table S2: Calculated average lifetime (from fitting data) of three CD incorporated ORMOSIL films.

Sample	a ₁	a ₂	a ₃	τ1(ns)	τ1(ns)	τ1(ns)	$\tau_{av}(ns)$	χ^2	Pattern
name									
CDs in ethanol	0.113	0.88711	0	1.075	1.031	0	1.0348	1.2507	Bi- exponential
OF	0.682	0.29	0.023	1.18	2.6	7.26	1.724	1.2	Tri- exponential
YF	0.6504	0.3495	0	0.0658	3.07	0	1.1147	1.29	Bi- exponential
GF	0.689	0.3109	0	0.0637	3.198	0	1.038	1.18	Bi- exponential

Figure S1. Digital photos of purified CDs under (a) visible and (b) UV light (λ =365 nm).

Figure S2. Digital photos of CDs incorporated ORMOSIL sol under visible light (a) and UV light, $\lambda = 365$ nm (b). The same sol (orange emitting PL) produced yellow and green colored PL emission after pH tuning at pH ~7 and ~9 ($\lambda = 365$ nm).

Figure S3. GIXRD pattern of purified CDs (drop-casted on silicon wafer) showing amorphous hump in the range of 16.5–22 °20. The GIXRD pattern of the blank silicon wafer acquired under similar condition is also shown as reference.

Figure S4. FT-IR spectra of CDs in the range of (a) $3600-700 \text{ cm}^{-1}$ and (b) magnified view (1800-1200 cm⁻¹) before (i) and after (ii) column purification.

Figure S5. XPS spectra of column purified CDs in ethanol: (a) Survey scan; (b) and (c) High resolution scans of C1s and N1s, respectively with deconvolutions.

Figure S6. Change of zeta potential values of CDs in solution with increase of pH values. The data points are joined for visual guidance.

Figure S7. Profilometric traces at three different places of three representative CD-ORMOSIL films deposited on glass substrate (The as-prepared film was first scratched with a sharp steel blade and then cured at 70 $^{\circ}$ C for 2 h).

Figure S8. Cross sectional view of FESEM image of orange emitting film prepared via standard dip coating method.

Figure S9. pH dependent tricolor emissions of purified CDs in solution.

Figure S10. Excitation independent PL emissions of orange (OF), yellow (YF) and green (GF) films at two different excitation wavelengths (a) 255 nm and (b) 275 nm.

Figure S11. PL curves showing the photo stability of orange emitting film under UV (λ =275 nm) irradiation.

Figure S12. Decay lifetime curve of column purified CDs in ethanol.