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Goals

* Understand data-centric and process-centric
perspectives.

* Learn how simulation can guide trial design
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The West African Ebola Epidemic
200: Liberia

e \What processes drive the ol
epidemic? o

e Who is at highest risk?

e When will it peak/end? week 1:

e Which interventions work? ] s

e Optimal allocation of sparse %E \'l%m |
resources? “
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Infectious Disease Research

Logistical, financial and ethical constraints
limit quantity & quality of data
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Perspectives from Two Disciplines

Classical Epidemiology Mechanistic Epidemiology
-
Data-Centric Process-Centric
(Public Health) (Disease Ecology)
Risk Factors Infectious Disease Dynamics
Biostatistics Mathematical Modeling
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Classical Epidemiology

e Does A cause B?
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Classical Epidemiology

Individual Literate HIV infected

e Does literacy cause HIV?
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e Find correlations that
imply causality by
accounting for

1. random error: do we have enough data?

2. bias: are design & analysis valid?
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Classical Epidemiology

Infer causation via carefully identified correlations

Minimize bias via:
e study design: e.g. randomization, blinding

e analytical methods: e.g. causal inference modeling
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What do Introductory Epidemiology courses
teach?

* Measures of Disease
* Measures of Effect (of a risk factor)

* Study Designs for Measuring Effects
* Dealing with random error
e Dealing with confounding
* Dealing with bias

* Biostatistical analyses for analyzing data
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Mechanistic Epidemiology

* Scale up from individual processes to population patterns

) Susceptible
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Mechanistic Epidemiology  (CllGK®
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Mechanistic Epidemiology

* Scale up from individual processes to population patterns
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Mechanistic Epidemiology  (CllGK®

* Scale up from individual processes to population patterns

solid arrow = flow between disease states
dashed arrow = influence
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How do contact processes
cause epidemics?

transmission recovery
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Mechanistic Epidemiology  (CllGK®

* Scale up from individual processes to population patterns

solid arrow = flow between disease states
dashed arrow = influence
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Mechanistic Epidemiology  (JlGK®

* Scale up from individual processes to population patterns

* “What if” scenarios not amenable to experimentation
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Mechanistic Epidemiology  (JlGK®

* Scale up from individual processes to population patterns

* “What if” scenarios not amenable to experimentation

What if each person exposed 50% more people?

transmission recovery
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Mechanistic Epidemiology  (JlGK®

* Scale up from individual processes to population patterns

* “What if” scenarios not amenable to experimentation

What if we treated people and doubled the rate of recovery?

transmission recovery
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Mechanistic Epidemiology  (JlGK®

* Scale up from individual processes to population patterns
* “What if” scenarios not amenable to experimentation

* Estimating parameters by fitting available data

transmission recovery
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Mechanistic Epidemiology  (JlGK®

* Scale up from individual processes to population patterns
* “What if” scenarios not amenable to experimentation

* Estimating parameters by fitting available data

transmission recovery
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Mechanistic Epidemiology  (JlGK®

e Scale up from individual processes to population patterns
 “What if” scenarios not amenable to experimentation

* Estimating parameters by fitting available data

transmission recovery

) Susceptible
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Mechanistic Epidemiology  (CllGK®

* Scale up from individual processes to population patterns
* “What if” scenarios not amenable to experimentation

* Estimating parameters by fitting available data

Estimate transmission rate or other model parameters
(with confidence intervals)
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Mechanistic Epidemiology  (JlGK®

Scale up from individual processes to population patterns
“What if” scenarios not amenable to experimentation
Estimating parameters by fitting available data

Prediction

transmission recovery
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Mechanistic Epidemiology  (JlGK®

Scale up from individual processes to population patterns
“What if” scenarios not amenable to experimentation
Estimating parameters by fitting available data

Prediction

Model selection (choosing between alternative hypotheses)

Model 1
S _"'\.__% I ‘_’ R # people

intervention

Model 2




Mechanistic Epidemiology  (JlGK®

Scale up from individual processes to population patterns

“What if” scenarios not amenable to experimentation

—_

Estimating parameters by fitting available data data focus

Prediction —emerged in
last 10 years

Model selection —

Model 1

¢

intervention

Model 2




Classical Epidemiology Mechanistic Epidemiology
| |

Data-Centric Process-Centric

Individual  Literate HIV infected Age SES
0 5 high
8 high

7 low

16 low

35 low

28 high

N WU WN R
=R R=R==O0 000

18 low
45 high

Model 1

é .
S -’®_’ R # people

intervention

¥
Q€

Model 2

An Integrative Approach

Mechanistically model both observation processes &
underlying epidemiological processes
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Vaccine Efficacy Trials

Compare disease risk between
vaccinated & unvaccinated participants.

If high risk people choose to be vaccinated, confounding

Confounding avoided by randomization

Randomized double-blinded placebo-controlled trials
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s randomization ethical?

Equipoise

Uncertainty regarding whether
a participant is better off
receiving intervention or placebo.
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Stepped Wedge Cluster Trial

Evaluate vaccine when ethically problematic to
withhold intervention

Vaccinate everyone as fast as possible, by groups,
in random group-order

Compare infection risk between
vaccinated & not-yet-vaccinated individuals

Randomized group-order avoids confounding
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Stepped Wedge Cluster Trial

Cluster of 300 frontline caregivers (HCW+)

x20

trial week

 —

Observed for 24 weeks (6 months)
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Stepped Wedge Cluster Trial

Clusters from geographically
distinct areas

Koinadugu

Bombali

Kailahun

Moyamba

Kenema

trialweek = | 0 ot

ierra Leone
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Stepped Wedge Cluster Trial

_ vaccinated vaccinated
unvaccinated ynprotected  protected

SWCT

trial week
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Stepped Wedge Cluster Trial

' vaccinated vaccinated
unvaccinated ynprotected  protected
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Stepped Wedge Cluster Trial

' vaccinated vaccinated
unvaccinated ynprotected  protected

SWCT

trial week

infected participant
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Stepped Wedge Cluster Trial

' vaccinated vaccinated
unvaccinated ynprotected  protected

SWCT

Nov 2014

Jan 2014

trial week

€& |CI3D



Regional Variation in Ebola Cases

February 2015
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Stepped Wedge Cluster Trial

, _ vaccinated vaccinated
infection hazard unvaccinated ynprotected  protected

SWCT

trial week
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Stepped Wedge Cluster Trial

vaccinated vaccinated
unprotected protected

infection hazard unvaccinated

2001 vaccine
Sierra Leone discussions
1501 begin
cases 100+
week .,
e

trial week
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Stepped Wedge Cluster Trial

, _ vaccinated vaccinated
infection hazard unvaccinated ynprotected  protected

trial week
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Other Options

vaccinated vaccinated

infection hazard unvaccinated  ynprotected  protected

simultaneous instant RCT

trial week
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Other Options

vaccinated vaccinated

infection hazard unvaccinated  ynprotected  protected

random ordered RCT

trial week
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Other Options

vaccinated vaccinated

infection hazard unvaccinated ynprotected  protected

SWCT risk—prioritized RCT

trial week
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Project Declining Epidemics

Western Area Urban

projecting
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Project Declining Epidemics

55 projecting

EVD 2

cases 1o
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Project Declining Epidemics

55 projecting

EVD 2

cases 1o # HCW in a district

proportion cases that are HCW)




Project Declining Epidemics

projecting

30

0.01
' HCW
proportion cases that are HCW
EVD = proportion cases that are HCW
i ( # HCW in a district monthly } \'\N‘A\fﬂw

cases 1o rise

0.00
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Modeling Ebola Risk

Cluster Variation

each lineis a

o 0.02 + different district
trial participants’

monthy
infection risk
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Modeling Ebola Risk

Cluster Variation Individual Variation

each lineis a

o 0.02 different district
trial participants’

monthy
infection risk g1 A
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1.

Evaluating Trial Designs

Fit epidemic declines with decay model.

Simulate stochastic epidemic projections

Simulate trial population with risk determined by projections.

Simulate vaccine trial design.

> W N

Analyze data.

x 2000 for each scenario

False Positive Rate

If vaccine is not efficacious, % times we conclude it is efficacious

Statistical Power

If vaccine is efficacious, % times we conclude it is efficacious
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False Positive Rates

Mixed Effects Survival Analysis Permutation Test

False O

Positive Rate
order

random
= = = risk—prioritized

== == gimultaneous instant

T

1 I I 1 1 I 1
25% 5% 7.5% 10% 25% 5% 75% 10%
% of district—level cases in trial population

vaccinated vaccinated

Infection hazard unvaccinated  ynprotacted  protected

simultaneous instant RCT random ordered RCT risk—prioritized RCT

trial week k’é‘
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Statistical Power

Risk-prioritized RCT far more
statistically powerful in this
context.

statistical °°

power

SWCT has < 15% power of 0.4
detecting an efficacious vaccine.

Very inefficient for

spatiotemporally variable settings 07

vaccine efficacy
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Speed is a Priority!

trial start date

Bellan et al. 2015. Lancet ID.
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What about ethics?

Avoids Equipoise Concern
1. No control groups
2. Vaccinate everyone as fast as possible

(no prioritization of information over outcomes)

. . ) vaccinated vaccinated
Infection hazard unvaccinated  ynprotected  protected

risk—prioritized RCT

But high risk people
should be vaccinated
first...

trial week Bellan et al. 2015. Lancet ID
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Informed by our analysis,
CDC did a risk-prioritized RCT.

Vaccinated everyone at the end.

200 -
150 1

cases 100

week

50 4

Sierra Leone

vaccine

discussions

begin

risk—prioritized RCT

CDC vaccine trial

Jan -

A
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Computational Resources

600,000 simulated trials (2K for 300 scenarios)

480 million statistical models fit

2 days on TX Advanced Computing Cluster

Total analysis done in 3 weeks
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Interactions with CDC

Dialogue/collaboration with CDC Modelers (Lopman, Gambhir)

Results discussed in CDC Vaccine Team Meetings

CDC already leaning towards phased-RCT due to adaptability in declining
epidemic context

Results were influential in helping CDC think through new design

Ongoing CDC STRIVE began April 14th
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Integrative Approach

process-centric data-centric

Western Area Urban
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DETERMINISTIC

STOCHASTIC

Model Taxonomy

CONTINUOUS TREATMENT OF INDIVIDUALS

(averages, proportions, or population densities)

DISCRETE TREATMENT OF INDIVIDUALS

Cluster Variation Individual Variation

0.03
l
0.02 ||
trial participants’

monthy
infection risk g1 |\
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Philosophy of Modeling & Trial Design
- - Trials superimposed over
transmission modeling
AL
- R

Concrete

Abstract
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summary

* Trial design requires thinking both from
data- & process- centric perspectives

* Simulation can reveal weaknesses in designs

* Intuitive arguments for specific designs may be
wrong =2 SIMULATE!
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