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Lesson 1: Cheers! Stats with Beers

Welcome to the second module of our course in Engineering Computations, for undergraduate en-
gineering students. This module explores practical statistical analysis with Python.

This first lesson explores how we can answer questions using data combined with practical
methods from statistics. We’ll need some fun data to work with. We found a neat data set of
canned craft beers in the US, scraped from the web and cleaned up by Jean-Nicholas Hould
(@NicholasHould on Twitter)—who we want to thank for having a permissive license on his
GitHub repository so we can reuse his work!

The data source (@craftcans on Twitter) doesn’t say that the set includes all the canned beers
brewed in the country. So we have to asume that the data is a sample and may contain biases.

We’ll manipulate the data using NumPy—the array library for Python that we learned about in
Module 1, lesson 4. But we’ll also learn about a new Python library for data analysis called pandas.

pandas is an open-source library providing high-performance, easy-to-use data structures and
data-analysis tools. Even though pandas is great for data analysis, we won’t exploit all its power
in this lesson. But we’ll learn more about it later on!

We’ll use pandas to read the data file (in csv format), display it in a nice table, and extract the
columns that we need—which we’ll convert to numpy arrays to work with.

Let’s start by importing the two Python libraries.

In [1]: import pandas
import numpy

1 Read the data file

Below, we’ll take a peek into the data file, beers.csv, using the system command head (which we
can use with a bang, thanks to IPython).

Note: If you downloaded this notebook alone, rather than the full collection for this course, you
may not have the data file on the location we assume below. In that case, you can download the
data if you add a code cell, and execute the following code in it:

from urllib.request import urlretrieve
URL = 'http://go.gwu.edu/engcomp2data1?accessType=DOWNLOAD'
urlretrieve(URL, 'beers.csv')
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The data file will be downloaded to your working directory, and you will then need to remove the
path information, i.e., the string '../../data/', below.

In [2]: !head "../../data/beers.csv"

,abv,ibu,id,name,style,brewery_id,ounces
0,0.05,,1436,Pub Beer,American Pale Lager,408,12.0
1,0.066,,2265,Devil's Cup,American Pale Ale (APA),177,12.0
2,0.071,,2264,Rise of the Phoenix,American IPA,177,12.0
3,0.09,,2263,Sinister,American Double / Imperial IPA,177,12.0
4,0.075,,2262,Sex and Candy,American IPA,177,12.0
5,0.077,,2261,Black Exodus,Oatmeal Stout,177,12.0
6,0.045,,2260,Lake Street Express,American Pale Ale (APA),177,12.0
7,0.065,,2259,Foreman,American Porter,177,12.0
8,0.055,,2258,Jade,American Pale Ale (APA),177,12.0

We can use pandas to read the data from the csv file, and save it into a new variable called beers.
Let’s then check the type of this new variable—rememeber that we can use the function type() to
do this.

In [3]: beers = pandas.read_csv("../../data/beers.csv")

In [4]: type(beers)

Out[4]: pandas.core.frame.DataFrame

This is a new data type for us: a pandas DataFrame. From the pandas documentation: "A
DataFrame is a 2-dimensional labeled data structure with columns of potentially different types"
[4]. You can think of it as the contens of a spreadsheet, saved into one handy Python variable. If
you print it out, you get a nicely laid-out table:

In [5]: beers

Out[5]: Unnamed: 0 abv ibu id \
0 0 0.050 NaN 1436
1 1 0.066 NaN 2265
2 2 0.071 NaN 2264
3 3 0.090 NaN 2263
4 4 0.075 NaN 2262
5 5 0.077 NaN 2261
6 6 0.045 NaN 2260
7 7 0.065 NaN 2259
8 8 0.055 NaN 2258
9 9 0.086 NaN 2131
10 10 0.072 NaN 2099
11 11 0.073 NaN 2098
12 12 0.069 NaN 2097
13 13 0.085 NaN 1980
14 14 0.061 60.0 1979
15 15 0.060 NaN 2318
16 16 0.060 NaN 2170
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17 17 0.060 NaN 2169
18 18 0.060 NaN 1502
19 19 0.082 NaN 1593
20 20 0.082 NaN 1592
21 21 0.099 92.0 1036
22 22 0.079 45.0 1024
23 23 0.079 NaN 976
24 24 0.044 42.0 876
25 25 0.049 17.0 802
26 26 0.049 17.0 801
27 27 0.049 17.0 800
28 28 0.070 70.0 799
29 29 0.070 70.0 797
... ... ... ... ...
2380 2380 0.080 31.0 761
2381 2381 0.055 NaN 2149
2382 2382 0.071 60.0 2148
2383 2383 0.052 NaN 2147
2384 2384 0.048 38.0 2146
2385 2385 0.059 NaN 2047
2386 2386 0.062 61.0 1470
2387 2387 0.045 23.0 1469
2388 2388 0.058 72.0 2627
2389 2389 0.045 NaN 2626
2390 2390 0.059 135.0 1676
2391 2391 0.047 15.0 1468
2392 2392 0.050 NaN 822
2393 2393 0.065 82.0 2417
2394 2394 0.028 15.0 2306
2395 2395 0.065 69.0 1697
2396 2396 0.069 69.0 2194
2397 2397 0.045 25.0 1514
2398 2398 0.077 30.0 1513
2399 2399 0.069 69.0 1512
2400 2400 0.060 50.0 1511
2401 2401 0.042 NaN 1345
2402 2402 0.082 NaN 1316
2403 2403 0.055 NaN 1045
2404 2404 0.075 NaN 1035
2405 2405 0.067 45.0 928
2406 2406 0.052 NaN 807
2407 2407 0.055 NaN 620
2408 2408 0.055 40.0 145
2409 2409 0.052 NaN 84

name \
0 Pub Beer
1 Devil's Cup
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2 Rise of the Phoenix
3 Sinister
4 Sex and Candy
5 Black Exodus
6 Lake Street Express
7 Foreman
8 Jade
9 Cone Crusher
10 Sophomoric Saison
11 Regional Ring Of Fire
12 Garce Selé
13 Troll Destroyer
14 Bitter Bitch
15 Ginja Ninja
16 Cherried Away
17 Rhubarbarian
18 BrightCider
19 He Said Baltic-Style Porter
20 He Said Belgian-Style Tripel
21 Lower De Boom
22 Fireside Chat
23 Marooned On Hog Island
24 Bitter American
25 Hell or High Watermelon Wheat (2009)
26 Hell or High Watermelon Wheat (2009)
27 21st Amendment Watermelon Wheat Beer (2006)
28 21st Amendment IPA (2006)
29 Brew Free! or Die IPA (2008)
... ...
2380 P-51 Porter
2381 #001 Golden Amber Lager
2382 #002 American I.P.A.
2383 #003 Brown & Robust Porter
2384 #004 Session I.P.A.
2385 Tarasque
2386 Ananda India Pale Ale
2387 Tiny Bomb
2388 Train Hopper
2389 Edward’s Portly Brown
2390 Troopers Alley IPA
2391 Wolverine Premium Lager
2392 Woodchuck Amber Hard Cider
2393 4000 Footer IPA
2394 Summer Brew
2395 Be Hoppy IPA
2396 Worthy IPA
2397 Easy Day Kolsch
2398 Lights Out Vanilla Cream Extra Stout
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2399 Worthy IPA (2013)
2400 Worthy Pale
2401 Patty's Chile Beer
2402 Colorojo Imperial Red Ale
2403 Wynkoop Pumpkin Ale
2404 Rocky Mountain Oyster Stout
2405 Belgorado
2406 Rail Yard Ale
2407 B3K Black Lager
2408 Silverback Pale Ale
2409 Rail Yard Ale (2009)

style brewery_id ounces
0 American Pale Lager 408 12.0
1 American Pale Ale (APA) 177 12.0
2 American IPA 177 12.0
3 American Double / Imperial IPA 177 12.0
4 American IPA 177 12.0
5 Oatmeal Stout 177 12.0
6 American Pale Ale (APA) 177 12.0
7 American Porter 177 12.0
8 American Pale Ale (APA) 177 12.0
9 American Double / Imperial IPA 177 12.0
10 Saison / Farmhouse Ale 177 12.0
11 Saison / Farmhouse Ale 177 12.0
12 Saison / Farmhouse Ale 177 12.0
13 Belgian IPA 177 12.0
14 American Pale Ale (APA) 177 12.0
15 Cider 154 12.0
16 Cider 154 12.0
17 Cider 154 12.0
18 Cider 154 12.0
19 Baltic Porter 368 12.0
20 Tripel 368 12.0
21 American Barleywine 368 8.4
22 Winter Warmer 368 12.0
23 American Stout 368 12.0
24 American Pale Ale (APA) 368 12.0
25 Fruit / Vegetable Beer 368 12.0
26 Fruit / Vegetable Beer 368 12.0
27 Fruit / Vegetable Beer 368 12.0
28 American IPA 368 12.0
29 American IPA 368 12.0
... ... ... ...
2380 American Porter 509 16.0
2381 American Amber / Red Lager 211 12.0
2382 American IPA 211 12.0
2383 American Porter 211 12.0
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2384 American IPA 211 12.0
2385 Saison / Farmhouse Ale 239 12.0
2386 American IPA 239 12.0
2387 American Pilsner 239 12.0
2388 American IPA 14 12.0
2389 American Brown Ale 14 12.0
2390 American IPA 344 12.0
2391 American Pale Lager 402 12.0
2392 Cider 501 12.0
2393 American IPA 109 12.0
2394 American Pilsner 109 12.0
2395 American IPA 339 16.0
2396 American IPA 199 12.0
2397 Kölsch 199 12.0
2398 American Double / Imperial IPA 199 12.0
2399 American IPA 199 12.0
2400 American Pale Ale (APA) 199 12.0
2401 Chile Beer 424 12.0
2402 American Strong Ale 424 12.0
2403 Pumpkin Ale 424 12.0
2404 American Stout 424 12.0
2405 Belgian IPA 424 12.0
2406 American Amber / Red Ale 424 12.0
2407 Schwarzbier 424 12.0
2408 American Pale Ale (APA) 424 12.0
2409 American Amber / Red Ale 424 12.0

[2410 rows x 8 columns]

Inspect the table above. The first column is a numbering scheme for the beers. The other columns
contain the following data:

• abv: Alcohol-by-volume of the beer.
• ibu: International Bittering Units of the beer.
• id: Unique identifier of the beer.
• name: Name of the beer.
• style: Style of the beer.
• brewery_id: Unique identifier of the brewery.
• ounces: Ounces of beer in the can.

2 Explore the data

In the field of statistics, Exploratory Data Analysis (EDA) has the goal of summarizing the main
features of our data, and seeing what the data can tell us without formal modeling or hypothesis-
testing. [2]

Let’s start by extracting the columns with the abv and ibu values, and converting them to NumPy
arrays. One of the advantages of data frames in pandas is that we can access a column simply
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using its header, like this:

data_frame['name_of_column']

The output of this action is a pandas Series. From the documentation: "a Series is a 1-
dimensional labeled array capable of holding any data type." [4]

Check the type of a column extracted by header:

In [6]: type(beers['abv'])

Out[6]: pandas.core.series.Series

Of course, you can index and slice a data series like you know how to do with strings, lists and
arrays. Here, we display the first ten elements of the abv series:

In [7]: beers['abv'][:10]

Out[7]: 0 0.050
1 0.066
2 0.071
3 0.090
4 0.075
5 0.077
6 0.045
7 0.065
8 0.055
9 0.086
Name: abv, dtype: float64

Inspect the data in the table again: you’ll notice that there are NaN (not-a-number) elements in
both the abv and ibu columns. Those values mean that there was no data reported for that beer.
A typical task when cleaning up data is to deal with these pesky NaNs.

Let’s extract the two series corresponding to the abv and ibu columns, clean the data by removing
all NaN values, and then access the values of each series and assign them to a NumPy array.

In [8]: abv_series = beers['abv']

In [9]: len(abv_series)

Out[9]: 2410

Another advantage of pandas is that it has the ability to handle missing data. The data-frame
method dropna() returns a new data frame with only the good values of the original: all the null
values are thrown out. This is super useful!

In [10]: abv_clean = abv_series.dropna()

Check out the length of the cleaned-up abv data; you’ll see that it’s shorter than the original. NaNs
gone!

In [11]: len(abv_clean)

Out[11]: 2348
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Remember that a a pandas Series consists of a column of values, and their labels. You can extract
the values via the series.values attribute, which returns a numpy.ndarray (multidimensional
array). In the case of the abv_clean series, you get a one-dimensional array. We save it into the
variable name abv.

In [12]: abv = abv_clean.values

In [13]: print(abv)

[ 0.05 0.066 0.071 ..., 0.055 0.055 0.052]

In [14]: type(abv)

Out[14]: numpy.ndarray

Now we repeat the whole process for the ibu column: extract the column into a series, clean it up
removing NaNs, extract the series values as an array, check how many values we lost.

In [15]: ibu_series = beers['ibu']

len(ibu_series)

Out[15]: 2410

In [16]: ibu_clean = ibu_series.dropna()

ibu = ibu_clean.values

len(ibu)

Out[16]: 1405

Exercise Write a Python function that calculates the percentage of missing values for a certain
data series. Use the function to calculate the percentage of missing values for the abv and ibu data
sets.

For the original series, before cleaning, remember that you can access the values with
series.values (e.g., abv_series.values).

In [ ]:

Important: Notice that in the case of the variable ibu we are missing almost 42% of the values.
This is important, because it will affect our analysis. When we do descriptive statistics, we will
ignore these missing values, and having 42% missing will very likely cause bias.

3 Ready, stats, go!

Now that we have NumPy arrays with clean data, let’s see how we can manipulate them to get
some useful information.
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Focusing on the numerical variables abv and ibu, we’ll walk through some "descriptive statistics,"
below. In other words, we aim to generate statistics that summarize the data concisely.

3.1 Maximum and minimum

The maximum and minimum values of a dataset are helpful as they tell us the range of our sample:
the range gives some indication of the variability in the data. We can obtain them for our abv and
ibu arrays with the min() and max() functions from NumPy.

abv

In [17]: abv_min = numpy.min(abv)
abv_max = numpy.max(abv)

In [18]: print('The minimum value for abv is: ', abv_min)
print('The maximum value for abv is: ', abv_max)

The minimum value for abv is: 0.001
The maximum value for abv is: 0.128

ibu

In [19]: ibu_min = numpy.min(ibu)
ibu_max = numpy.max(ibu)

In [20]: print('The minimum value for ibu is: ', ibu_min)
print('The maximum value for ibu is: ', ibu_max)

The minimum value for ibu is: 4.0
The maximum value for ibu is: 138.0

3.2 Mean value

The mean value is one of the main measures to describe the central tendency of the data: an
indication of where’s the "center" of the data. If we have a sample of N values, xi, the mean, x̄, is
calculated by:

x̄ =
1
N Â

i
xi

In words, that is the sum of the data values divided by the number of values, N.

You’ve already learned how to write a function to compute the mean in Module 1 Lesson 5, but
you also learned that NumPy has a built-in mean() function. We’ll use this to get the mean of the
abv and ibu values.

In [21]: abv_mean = numpy.mean(abv)
ibu_mean = numpy.mean(ibu)
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Next, we’ll print these two variables, but we’ll use some fancy new way of printing with Python’s
string formatter, string.format(). There’s a sweet site dedicated to Python’s string formatter,
called PyFormat, where you can learn lots of tricks!

The basic trick is to use curly brackets {} as placeholder for a variable value that you want to print
in the middle of a string (say, a sentence that explains what you are printing), and to pass the
variable name as argument to .format(), preceded by the string.

Let’s try something out. . .

In [22]: print('The mean value for abv is {} and for ibu {}'.format(abv_mean,ibu_mean))

The mean value for abv is 0.059773424190800686 and for ibu 42.71316725978647

Ugh! That doesn’t look very good, does it? Here’s where Python’s string formatting gets fancy.
We can print fewer decimal digits, so the sentence is more readable. For example, if we want to
have four decimal digits, we specify it this way:

In [23]: print('The mean value for abv is {:.4f} and for ibu {:.4f}'.format(abv_mean,
ibu_mean))

The mean value for abv is 0.0598 and for ibu 42.7132

Inside the curly brackets—the placeholders for the values we want to print—the f is for float and
the .4 is for four digits after the decimal dot. The colon here marks the beginning of the format
specification (as there are options that can be passed before). There are so many tricks to Python’s
string formatter that you’ll usually look up just what you need. Another useful resource for string
formatting is the Python String Format Cookbook. Check it out!

3.3 Variance and standard deviation

While the mean indicates where’s the center of your data, the variance and standard deviation

describe the spread or variability of the data. We already mentioned that the range (difference
between largest and smallest data values) is also an indication of variability. But the standard
deviation is the most common measure of variability.

We really like the way Prof. Kristin Sainani, of Stanford University, presents this in her online
course on Statistics in Medicine. In her lecture "Describing Quantitative Data: Whhat is the vari-
ability in the data?", available on YouTube, she asks: What if someone were to ask you to devise a
statistic that gives the avarage distance from the mean? Think about this a little bit.

The distance from the mean, for any data value, is xi � x̄. So what is the average of the distances
from the mean? If we try to simply compute the average of all the values xi � x̄, some of which
are negative, you’ll just get zero! It doesn’t work.

Since the problem is the negative distances from the mean, you might suggest using absolute
values. But this is just mathematically inconvenient. Another way to get rid of negative values is
to take the squares. And that’s how we get to the expression for the variance: it is the average of
the squares of the deviations from the mean. For a set of N values,
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var =
1
N Â

i
(xi � x̄)2

The variance itself is hard to interpret. The problem with it is that the units are strange (they are
the square of the original units). The standard deviation, the square root of the variance, is more
meaningful because it has the same units as the original variable. Often, the symbol s is used for
it:

s =
p

var =

s
1
N Â

i
(xi � x̄)2

3.4 Sample vs. population

The above definitions are used when N (the number of values) represents the entire population.
But if we have a sample of that population, the formulas have to be adjusted: instead of dividing
by N we divide by N � 1. This is important, especially when we work with real data since usually
we have samples of populations.

The standard deviation of a sample is denoted by s, and the formula is:

s =

s
1

N � 1 Â
i
(xi � x̄)2

Why? This gets a little technical, but the reason is that if you have a sample of the population, you
don’t know the real value of the mean, and x̄ is actually an estimate of the mean. That’s why you’ll
often find the symbol µ used to denote the population mean, and distinguish it with the sample
mean, x̄. Using x̄ to compute the standard deviation introduces a small bias: x̄ is computed from
the sample values, and the data are on average (slightly) closer to x̄ than the population is to µ.
Dividing by N � 1 instead of N corrects this bias!

Prof. Sainani explains it by saying that we lost one degree of freedom when we estimated the
mean using x̄. For example, say we have 100 people and I give you their mean age, and the actual
age for 99 people from the sample: you’ll be able to calculate the age of that 100th person. Once
we calculated the mean, we only have 99 degrees of freedom left because that 100th person’s age
is fixed.

3.5 Let’s code!

Now that we have the math sorted out, we can program functions to compute the variance and
the standard deviation. In our case, we are working with samples of the population of craft beers,
so we need to use the formulas with N � 1 in the denominator.

In [24]: def sample_var(array):
""" Calculates the variance of an array that contains values of a

sample of a population.
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Arguments

---------

array : array, contains sample of values.

Returns

-------

var : float, variance of the array .

"""

sum_sqr = 0
mean = numpy.mean(array)

for element in array:
sum_sqr += (element - mean)**2

N = len(array)
var = sum_sqr / (N - 1)

return var

Notice that we used numpy.mean() in our function: do you think we can make this function even
more Pythonic?

Hint: Yes!, we totally can.

Exercise: Re-write the function sample_var() using numpy.sum() to replace the for-loop. Name
the function var_pythonic.

In [ ]:

We have the sample variance, so we take its square root to get the standard deviation. We can
make it a function, even though it’s just one line of Python, to make our code more readable:

In [25]: def sample_std(array):
""" Computes the standard deviation of an array that contains values

of a sample of a population.

Arguments

---------

array : array, contains sample of values.

Returns

-------

std : float, standard deviation of the array.

"""

std = numpy.sqrt(sample_var(array))
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return std

Let’s call our brand new functions and assign the output values to new variables:

In [26]: abv_std = sample_std(abv)
ibu_std = sample_std(ibu)

If we print these values using the string formatter, only printing 4 decimal digits, we can display
our descriptive statistics in a pleasant, human-readable way.

In [27]: print('The standard deviation for abv is {:.4f} and for ibu {:.4f}'.format(
abv_std, ibu_std))

The standard deviation for abv is 0.0135 and for ibu 25.9541

These numbers tell us that the abv values are quite concentrated around the mean value, while the
ibu values are quite spread out from their mean. How could we check these descriptions of the
data? A good way of doing so is using graphics: various types of plots can tell us things about the
data.

We’ll learn about histograms in this lesson, and in the following lesson we’ll explore box plots.

4 Distribution plots

Every time that we work with data, visualizing it is very useful. Visualizations give us a better idea
of how our data behaves. One way of visualizing data is with a frequency-distribution plot known
as histogram: a graphical representation of how the data is distributed. To make a histogram, first
we need to "bin" the range of values (divide the range into intervals) and then we count how many
data values fall into each interval. The intervals are usually consecutive (not always), of equal size
and non-overlapping.

Thanks to Python and Matplotlib, making histograms is easy. We recommend that you always
read the documentation, in this case about histograms. We’ll show you here an example using the
hist() function from pyplot, but this is just a starting point.

Let’s import the libraries that we need for plotting, as you learned in Module 1 Lesson 5, then
study the plotting commands used below. Try changing some of the plot options and seeing the
effect.

In [28]: from matplotlib import pyplot
%matplotlib inline

#Import rcParams to set font styles

from matplotlib import rcParams

#Set font style and size

rcParams['font.family'] = 'serif'
rcParams['font.size'] = 16
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In [29]: #You can set the size of the figure by doing:

pyplot.figure(figsize=(10,5))

#Plotting

pyplot.hist(abv, bins=20, color='#3498db', histtype='bar', edgecolor='white')
#The \n is to leave a blank line between the title and the plot

pyplot.title('abv \n')
pyplot.xlabel('Alcohol by Volume (abv) ')
pyplot.ylabel('Frequency');

In [30]: #You can set the size of the figure by doing:

pyplot.figure(figsize=(10,5))

#Plotting

pyplot.hist(ibu, bins=20, color='#e67e22', histtype='bar', edgecolor='white')
#The \n is to leave a blanck line between the title and the plot

pyplot.title('ibu \n')
pyplot.xlabel('International Bittering Units (ibu)')
pyplot.ylabel('Frequency');
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Exploratory exercise: Play around with the plots, change the values of the bins, colors, etc.

4.1 Comparing with a normal distribution

A normal (or Gaussian) distribution is a special type of distrubution that behaves as shown in the
figure: 68% of the values are within one standard deviation s from the mean; 95% lie within 2s;
and at a distance of ±3s from the mean, we cover 99.7% of the values. This fact is known as the
3-s rule, or 68-95-99.7 (empirical) rule.

Notice that our histograms don’t follow the shape of a normal distribution, known as Bell Curve.
Our histograms are not centered in the mean value, and they are not symetric with respect to
it. They are what we call skewed to the right (yes, to the right). A right (or positive) skewed
distribution looks like it’s been pushed to the left: the right tail is longer and most of the values
are concentrated on the left of the figure. Imagine that "right-skewed" means that a force from the
right pushes on the curve.

Discuss with your neighbor

• How do you think that skewness will affect the percentages of coverage by standard devia-
tion compared to the Bell Curve?

• Can we calculate those percentages?
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Standard deviation and coverage in a normal distribution. Modified figure based on original from
Wikimedia Commons, the free media repository.

Spoiler alert! (and Exercise) Yes we can, and guess what: we can do it in a few lines of Python.
But before doing that, we want you to explain in your own words how the following piece of code
works.

Hints:

1. Check what the boolean operation (1 < x) & (x < 4) returns.
2. Check what happens if you sum booleans. For example, True + True, True + False and so

on.

In [31]: x = numpy.array([1,2,3,4])
num_ele = ((1 < x) & (x < 4)).sum()
print(num_ele)

2

Now, using the same idea, we will calculate the number of elements in each interval of width
(1s, 2s, 3s), and get the corresponding percentage.

Since we want to compute this for both of our variables, abv and ibu, we’ll write a function to do
so. Study carefully the code below. Better yet, explain it to your neighbor.

In [32]: def std_percentages(x, x_mean, x_std):
""" Computes the percentage of coverage at 1std, 2std and 3std from the

mean value of a certain variable x.

Arguments

---------

x : array, data we want to compute on.

x_mean : float, mean value of x array.

x_std : float, standard deviation of x array.
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Returns

-------

per_std_1 : float, percentage of values within 1 standard deviation.

per_std_2 : float, percentage of values within 2 standard deviations.

per_std_3 : float, percentage of values within 3 standard deviations.

"""

std_1 = x_std
std_2 = 2 * x_std
std_3 = 3 * x_std

elem_std_1 = (((x_mean - std_1) < x) & (x < (x_mean + std_1))).sum()
per_std_1 = elem_std_1 * 100 / len(x)

elem_std_2 = (((x_mean - std_2) < x) & (x < (x_mean + std_2))).sum()
per_std_2 = elem_std_2 * 100 / len(x)

elem_std_3 = (((x_mean - std_3) < x) & (x < (x_mean + std_3))).sum()
per_std_3 = elem_std_3 * 100 / len(x)

return per_std_1, per_std_2, per_std_3

Let’s compute the percentages next. Notice that the function above returns three values. If we
want to assign each value to a different variable, we need to follow a specific syntax. In our
example this would be:

abv

In [33]: abv_std1_per, abv_std2_per, abv_std3_per = std_percentages(abv, abv_mean, abv_std)

Let’s pretty-print the values of our variables so we can inspect them:

In [34]: print('The percentage of coverage at 1 std of the abv_mean is : {:.2f} %'.format(
abv_std1_per))
print('The percentage of coverage at 2 std of the abv_mean is : {:.2f} %'.format(
abv_std2_per))
print('The percentage of coverage at 3 std of the abv_mean is : {:.2f} %'.format(
abv_std3_per))

The percentage of coverage at 1 std of the abv_mean is : 74.06 %
The percentage of coverage at 2 std of the abv_mean is : 94.34 %
The percentage of coverage at 3 std of the abv_mean is : 99.79 %

ibu

In [35]: ibu_std1_per, ibu_std2_per, ibu_std3_per = std_percentages(ibu, ibu_mean, ibu_std)

In [36]: print('The percentage of coverage at 1 std of the ibu_mean is : {:.2f} %'.format(
ibu_std1_per))
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print('The percentage of coverage at 2 std of the ibu_mean is : {:.2f} %'.format(
ibu_std2_per))
print('The percentage of coverage at 3 std of the ibu_mean is : {:.2f} %'.format(
ibu_std3_per))

The percentage of coverage at 1 std of the ibu_mean is : 68.11 %
The percentage of coverage at 2 std of the ibu_mean is : 95.66 %
The percentage of coverage at 3 std of the ibu_mean is : 99.72 %

Notice that in both cases the percentages are not that far from the values for normal distribution
(68%, 95%, 99.7%), especially for 2s and 3s. So usually you can use these values as a rule of thumb.

5 What we’ve learned

• Read data from a csv file using pandas.
• The concepts of Data Frame and Series in pandas.
• Clean null (NaN) values from a Series using pandas.
• Convert a pandas Series into a numpy array.
• Compute maximum and minimum, and range.
• Revise concept of mean value.
• Compute the variance and standard deviation.
• Use the mean and standard deviation to understand how the data is distributed.
• Plot frequency distribution diagrams (histograms).
• Normal distribution and 3-sigma rule.

6 References

1. Craft beer datatset by Jean-Nicholas Hould.
2. Exploratory Data Analysis, Wikipedia article.
3. Think Python: How to Think Like a Computer Scientist (2012). Allen Downey. Green Tea Press.

PDF available
4. Intro to data Structures, pandas documentation.
5. Think Stats: Probability and Statistics for Programmers version 1.6.0 (2011). Allen Downey.

Green Tea Press. PDF available

Recommended viewing

From "Statistics in Medicine,", a free course in Stanford Online by Prof. Kristin Sainani, we highly
recommend that you watch these three lectures:

• Describing Quantitative Data: Where is the center?

• Describing Quantitative Data: What is the variability in the data? * Variability in the data,
continued: examples, bell curve
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Lesson 2: Seeing stats in a new light

Welcome to the second lesson in "Take off with stats," Module 2 of our course in Engineering Com-

putations. In the previous lesson, Cheers! Stats with Beers, we did some exploratory data analysis
with a data set of canned craft beers in the US [1]. We’ll continue using that same data set here,
but with a new focus on visualizing statistics.

In her lecture "Looking at Data", Prof. Kristin Sainani says that you should always plot your data.
Immediately, several things can come to light: are there outliers in your data? (Outliers are data
points that look abnormally far from other values in the sample.) Are there data points that don’t
make sense? (Errors in data entry can be spotted this way.) And especially, you want to get a
visual representation of how data are distributed in your sample.

In this lesson, we’ll play around with different ways of visualizing data. There are so many ways to
play! Have a look at the gallery of The Data Viz Project by ferdio (a data viz agency in Copenhagen).
Aren’t those gorgeous? Wouldn’t you like to be able to make some pretty pics like that? Python
can help!

Let’s begin. We’ll import our favorite Python libraries, and set some font parameters for our plots
to look nicer. Then we’ll load our data set for craft beers and begin!

In [1]: import numpy
import pandas
from matplotlib import pyplot
%matplotlib inline

#Import rcParams to set font styles

from matplotlib import rcParams

#Set font style and size

rcParams['font.family'] = 'serif'
rcParams['font.size'] = 16

In [2]: # Load the beers data set using pandas, and assign it to a dataframe

beers = pandas.read_csv("../../data/beers.csv")

Note: If you downloaded this notebook alone, and don’t have the data file on the location we
assume above, get it by adding a code cell, and execute the following code in it:

from urllib.request import urlretrieve
URL = 'http://go.gwu.edu/engcomp2data1?accessType=DOWNLOAD'
urlretrieve(URL, 'beers.csv')
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The data file will be downloaded to your working directory, and you will then need to remove the
path information, i.e., the string '../../data/', in the code to read it.

OK. Let’s have a look at the first few rows of the pandas dataframe we just created from the file,
and confirm that it’s a dataframe using the type() function. We only display the first 10 rows to
save some space.

In [3]: type(beers)

Out[3]: pandas.core.frame.DataFrame

In [4]: beers[0:10]

Out[4]: Unnamed: 0 abv ibu id name \
0 0 0.050 NaN 1436 Pub Beer
1 1 0.066 NaN 2265 Devil's Cup
2 2 0.071 NaN 2264 Rise of the Phoenix
3 3 0.090 NaN 2263 Sinister
4 4 0.075 NaN 2262 Sex and Candy
5 5 0.077 NaN 2261 Black Exodus
6 6 0.045 NaN 2260 Lake Street Express
7 7 0.065 NaN 2259 Foreman
8 8 0.055 NaN 2258 Jade
9 9 0.086 NaN 2131 Cone Crusher

style brewery_id ounces
0 American Pale Lager 408 12.0
1 American Pale Ale (APA) 177 12.0
2 American IPA 177 12.0
3 American Double / Imperial IPA 177 12.0
4 American IPA 177 12.0
5 Oatmeal Stout 177 12.0
6 American Pale Ale (APA) 177 12.0
7 American Porter 177 12.0
8 American Pale Ale (APA) 177 12.0
9 American Double / Imperial IPA 177 12.0

1 Quantitative vs. categorical data

As you can see in the nice table that pandas printed for the dataframe, we have several features
for each beer: the label abv corresponds to the acohol-by-volume fraction, label ibu refers to the
international bitterness unit (IBU), then we have the name of the beer and the style, the brewery
ID number, and the liquid volume of the beer can, in ounces.

Alcohol-by-volume is a numeric feature: a volume fraction, with possible values from 0 to 1 (some-
times also given as a percentage). In the first 10 rows of our dataframe, the ibu value is missing
(all those NaNs), but we saw in the previous lesson that ibu is also a numeric feature, with values
that go from a minimum of 4 to a maximum of 138 (in our data set). IBU is pretty mysterious: how

20



do you measure the bitterness of beer? It turns out that bitterness is measured as parts per million
of isohumulone, the acid found in hops [2]. Who knew?

For these numeric features, we learned that we can get an idea of the central tendency in the data
using the mean value, and we get ideas of spread of the data with the standard deviation (and also
with the range, but standard deviation is the most common).

Notice that the beer data also has a feature named style: it can be "American IPA" or "American
Porter" or a bunch of other styles of beer. If we want to study the beers according to style, we’ll
have to come up with some new ideas, because you can’t take the mean or standard deviation of
this feature!

Quantitative data have meaning through a numeric feature, either on a continuous scale (like a
fraction from 0 to 1), or a discrete count. Categorical data, in contrast, have meaning through a
qualitative feature (like the style of beer). Data in this form can be collected in groups (categories),
and then we can count the number of data items in that group. For example, we could ask how
many beers (in our set) are of the style "American IPA," or ask how many beers we have in each
style.

2 Visualizing quantitative data

In the previous lesson, we played around a bit with the abv and ibu columns of the dataframe
beers. For each of these columns, we extracted it from the dataframe and saved it into a pandas
series, then we used the dropna() method to get rid of null values. This "clean" data was our
starting point for some exploratory data analysis, and for plotting the data distributions using
histograms. Here, we will add a few more ingredients to our recipes for data exploration, and
we’ll learn about a new type of visualization: the box plot.

Let’s repeat here the process for extracting and cleaning the two series, and getting the values into
NumPy arrays:

In [5]: #Repeat cleaning values abv

abv_series = beers['abv']
abv_clean = abv_series.dropna()
abv = abv_clean.values

In [6]: #Repeat cleaning values ibu

ibu_series = beers['ibu']
ibu_clean = ibu_series.dropna()
ibu = ibu_clean.values

Let’s also repeat a histogram plot for the abv variable, but this time choose to plot just 10 bins
(you’ll see why in a moment).

In [7]: pyplot.figure(figsize=(6,4))
pyplot.hist(abv, bins=10, color='#3498db', histtype='bar', edgecolor='white')
pyplot.title('Alcohol by Volume (abv) \n')
pyplot.xlabel('abv')
pyplot.ylabel('Frequency');
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You can tell that the most frequent values of abv fall in the bin just above 0.05 (5% alcohol), and
the bin below. The mean value of our data is 0.06, which happens to be within the top-frequency
bin, but data is not always so neat (sometimes, extreme values weigh heavily on the mean). Note
also that we have a right skewed distribution, with higher-frequency bins occuring in the lower end
of the range than in the higher end.

If you played around with the bin sizes in the previous lesson, you might have noticed that with
a lot of bins, it becomes harder to visually pick out the patterns in the data. But if you use too few
bins, the plot is also unhelpful. What number of bins is just right? Well, it depends on your data,
so you’ll just have to experiment and use your best judgement.

Let’s learn a new trick. It turns out that pandas has built-in methods to make histograms directly
from columns of a dataframe! (It uses Matplotlib internally for that.) The syntax is short and
sweet:

dataframe.hist(column='label')

And pandas plots a pretty nice histogram without help. You can add optional parameters to set
these to your liking; see the documentation. Check it out, and compare with our previous plot.

In [8]: beers.hist(column='abv', edgecolor='white')
pyplot.title('Alcohol by Volume (abv) \n');
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Which one do you like better? Well, the pandas histogram took fewer lines of code to create. And it
doesn’t look bad at all. But we do have more fine-grained control with Matplotlib. Which method
you choose in a real situation will just depend on the situation and your preference.

2.1 Exploring quantitative data (continued)

In the previous lesson, you learned how to compute the mean of the data using numpy.mean().
How easy is that? But then we wrote our own custom functions to compute variance or standard
deviation. It shouldn’t surprise you by now that there are also NumPy functions for that!

Exercise:

• Go to the documentation of numpy.var() and analyze if this function is computing the sample

variance. Hint: Check what it says about the "data degrees of freedom."

If you did the reading, you might have noticed that, by default, the argument ddof in numpy.var()
is set to zero. If we use the default option, then we are not really calculating the sample variance.
Recall from the previous lesson that the sample variance is:

var
sample

=
1

N � 1 Â
i

(x

i

� x̄)2

Therefore, we need to be explicit about the division by N � 1 when calling numpy.var(). How do
we do that? We explicitly set ddof to 1.

For example, to compute the sample variance for our abv variable, we do:

In [9]: var_abv = numpy.var(abv, ddof=1)
print(var_abv)

0.000183378552053

Now we can compute the standard deviation by taking the square root of var_abv:

In [10]: std_abv = numpy.sqrt(var_abv)
print(std_abv)

0.0135417337167

You might be wondering if there is a built-in function for the standard deviation in NumPy. Go
on and search online and try to find something.

Spoiler alert! You will.

Exercise:

1. Read the documentation about the NumPy standard deviation function, compute the stan-
dard deviation for abv using this function, and check that you obtained the same value than
if you take the square root of the variance computed with NumPy.
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2. Compute the variance and standard deviation for the variable ibu.

2.2 Median value

So far, we’ve learned to characterize quantitative data using the mean, variance and standard
deviation.

If you watched Prof. Sainani’s lecture Describing Quantitative Data: Where is the center? (rec-
ommended in our previous lesson), you’ll recall that she also introduced the median: the middle
value in the data, the value that separates your data set in half. (If there’s an even number of data
values, you take the average between the two middle values.)

As you may anticipate, NumPy has a built-in function that computes the median, helpfully named
numpy.median().

Exercise: Using NumPy, compute the median for our variables abv and ibu. Compare the me-
dian with the mean, and look at the histogram to locate where the values fall on the x-axis.

2.3 Box plots

Another handy way to visualize the distribution of quantitative data is using box plots. By "dis-
tribution" of the data, we mean some idea of the dataset’s "shape": where is the center, what is
the range, what is the variation in the data. Histograms are the most popular type of plots in
exploratory data analysis. But check out box plots: they are easy to make with pyplot:

In [11]: pyplot.boxplot(abv, labels=['Alcohol by volume']);
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In [12]: pyplot.boxplot(ibu, labels=['International bitterness unit']);

What is going on here? Obviously, there is a box: it represents 50% of the data in the middle of the
data range, with the line across it (here, in orange) indicating the median.

The bottom of the box is at the 25th percentile, while the top of the box is at the 75th percentile.
In other words, the bottom 25% of the data falls below the box, and the top 25% of the data falls
above the box.

Confused by percentiles? The Nth percentile is the value below which N% of the observations fall.

Recall the bell curve from our previous lesson: we said that 95% of the data falls at a distance ±2s
from the mean. This implies that 5% of the data (the rest) falls in the (symmetrical) tails, which in
turn implies that the 2.5 percentile is at �2s from the mean, and the 97.5 percentile is at +2s from
the mean.

The percentiles 25, 50, and 75 are also named quartiles, since they divide the data into quarters.
They are named first (Q1), second (Q2 or median) and third quartile (Q3), respectively.

Fortunately, NumPy has a function to compute percentiles and we can do it in just one line. Let’s
use numpy.percentile() to compute the abv and ibu quartiles.

abv quartiles

In [13]: Q1_abv = numpy.percentile(abv, q=25)
Q2_abv = numpy.percentile(abv, q=50)
Q3_abv = numpy.percentile(abv, q=75)

print('The first quartile for abv is {}'.format(Q1_abv))
print('The second quartile for abv is {}'.format(Q2_abv))
print('The third quartile for abv is {}'.format(Q3_abv))

The first quartile for abv is 0.05
The second quartile for abv is 0.056
The third quartile for abv is 0.067
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ibu quartiles

You can also pass a list of percentiles to numpy.percentile() and calculate several of them in one
go. For example, to compute the quartiles of ibu, we do:

In [14]: quartiles_ibu = numpy.percentile(ibu, q=[25, 50, 75])

print('The first quartile for ibu is {}'.format(quartiles_ibu[0]))
print('The second quartile for ibu is {}'.format(quartiles_ibu[1]))
print('The third quartile for ibu is {}'.format(quartiles_ibu[2]))

The first quartile for ibu is 21.0
The second quartile for ibu is 35.0
The third quartile for ibu is 64.0

OK, back to box plots. The height of the box—between the 25th and 75th percentile—is called the
interquartile range (IQR). Outside the box, you have two vertical lines—the so-called "whiskers" of
the box plot—which used to be called "box and whiskers plot" [3].

The whiskers extend to the upper and lower extremes (short horizontal lines). The extremes follow
the following rules:

• Top whisker: lower value between the maximum and Q3 + 1.5 x IQR.
• Bottom whisker: higher value between the minimum and Q1 - 1.5 x IQR

Any data values beyond the upper and lower extremes are shown with a marker (here, small
circles) and are an indication of outliers in the data.

Exercise: Calculate the end-points of the top and bottom whiskers for both the abv and ibu
variables, and compare the results with the whisker end-points you see in the plot.

A bit of history: "Box-and-whiskers" plots were invented by John Tukey over 45 years ago.
Tukey was a famous mathematician/statistician who is credited with coining the words software

and bit [4]. He was active in the efforts to break the Enigma code durig WWII, and worked at
Bell Labs in the first surface-to-air guided missile ("Nike"). A classic 1947 work on early design
of the electonic computer acknowledged Tukey: he designed the electronic circuit for computing
addition. Tukey was also a long-time advisor for the US Census Bureau, and a consultant for the
Educational Testing Service (ETS), among many other contributions [5].

Note: Box plots are also drawn horizontally. Often, several box plots are drawn side-by-side
with the purpose of comparing distributions.

3 Visualizing categorical data

The typical method of visualizing categorical data is using bar plots. These show visually the
frequency of appearance of items in each category, or the proportion of data in each category.
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Suppose we wanted to know how many beers of the same style are in our data set. Remember: the
style of the beer is an example of categorical data. Let’s extract the column with the style information
from the beers dataframe, assign it to a variable named style_series, check the type of this
variable, and view the first 10 elements.

In [15]: style_series = beers['style']

In [16]: type(style_series)

Out[16]: pandas.core.series.Series

In [17]: style_series[0:10]

Out[17]: 0 American Pale Lager
1 American Pale Ale (APA)
2 American IPA
3 American Double / Imperial IPA
4 American IPA
5 Oatmeal Stout
6 American Pale Ale (APA)
7 American Porter
8 American Pale Ale (APA)
9 American Double / Imperial IPA
Name: style, dtype: object

Already in the first 10 elements we see that we have two beers of the style "American IPA," two
beers of the style "American Pale Ale (APA)," but only one beer of the style "Oatmeal Stout." The
question is: how many beers of each style are contained in the whole series?

Luckily, pandas has a built-in function to answer that question: series.value_counts() (where
series is the variable name of the pandas series you want the counts for). Let’s try it on our
style_series, and save the result in a new variable named style_counts.

In [18]: style_counts = style_series.value_counts()
style_counts[0:5]

Out[18]: American IPA 424
American Pale Ale (APA) 245
American Amber / Red Ale 133
American Blonde Ale 108
American Double / Imperial IPA 105
Name: style, dtype: int64

In [19]: type(style_counts)

Out[19]: pandas.core.series.Series

In [20]: len(style_counts)

Out[20]: 99

The len() function tells us that style_counts has 99 elements. That is, there are a total of 99 styles
of beer in our data set. Wow, that’s a lot!
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Notice that value_counts() returned the counts sorted in decreasing order: the most popular
beer in our data set is "American IPA" with 424 entries in our data. The next-most popular beer
is "American Pale Ale (APA)" with a lot fewer entries (245), and the counts decrease sharply after
that. Naturally, we’d like to know how much more popular are the top-2 beers from the rest. Bar
plot to the rescue!

Below, we’ll draw a horizontal bar plot directly with pandas (which uses Matplotlib internally)
using the plot.barh() method for series. We’ll only show the first 20 beers, because otherwise
we’ll get a huge plot. This plot gives us a clear visualization of the popularity ranking of beer
styles in the US!

In [21]: style_counts[0:20].plot.barh(figsize=(10,8), color='#008367', edgecolor='gray');

4 Visualizing multiple data

These visualizations are really addictive! We’re now getting ambitious: what if we wanted to
show more than one feature, together on the same plot? What if we wanted to get insights about
the relationship between two features through a multi-variable plot?

For example, don’t you want to know if the bitterness of beers is associated with the alcohol-by-
volume fraction? We do!

4.1 Scatter plots

Maybe we can do this: imagine a plot that has the alcohol-by-volume on the absissa, and the IBU
value on the ordinate. For each beer, we can place a dot on this plot with its abv and ibu values as
(x, y) coordinates. This is called a scatter plot.
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We run into a bit of a problem, though. The way we handled the beer data above, we extracted the
column for abv into a series, dropped the null entries, and saved the values into a NumPy array.
We then repeated this process for the ibu column. Because a lot more ibu values are missing, we
ended up with two arrays of different length: 2348 entries for the abv series, and 1405 entries for
the ibu series. If we want to make a scatter plot with these two features, we’ll need series (or
arrays) of the same length.

Let’s instead clean the whole beers dataframe (which will completely remove any row that has a
null entry), and then extract the values of the two series into NumPy arrays.

In [22]: beers_clean = beers.dropna()

In [23]: ibu = beers_clean['ibu'].values
len(ibu)

Out[23]: 1403

In [24]: abv = beers_clean['abv'].values
len(abv)

Out[24]: 1403

Notice that both arrays now have 1403 entries—not 1405 (the length of the clean ibu data), because
two rows that had a non-null ibu value did have a null abv value and were dropped.

With the two arrays of the same length, we can now call the pyplot.scatter() function.

In [25]: pyplot.figure(figsize=(8,8))
pyplot.scatter(abv, ibu, color='#3498db')
pyplot.title('Scatter plot of alcohol-by-volume vs. IBU \n')
pyplot.xlabel('abv')
pyplot.ylabel('IBU');

29

https://matplotlib.org/devdocs/api/_as_gen/matplotlib.pyplot.scatter.html


Hmm. That’s a bit of a mess. Too many dots! But we do make out that the beers with low alcohol-
by-volume tend to have low bitterness. For higher alcohol fraction, the beers can be anywhere on
the bitterness scale: there’s a lot of vertical spread on those dots to the right of the plot.

An idea! What if the bitterness has something to do with style? Neither of us knows much about
beer, so we have no clue. Could we explore this question with visualization? We found a way!

4.2 Bubble chart

What we imagined is that we could group together the beers by style, and then make a new scatter
plot where each marker corresponds to a style. The beers within a style, though, have many values
of alcohol fraction and bitterness: we have to come up with a "summary value" for each style. Well,
why not the mean. . . we can calculate the average abv and the average ibu for all the beers in each
style, use that pair as (x, y) coordinate, and put a dot there representing the style.

Better yet! We’ll make the size of the "dot" proportional to the popularity of the style in our data
set! This is called a bubble chart.

How to achieve this idea? We searched online for "mean of a column with pandas" and we landed
in dataframe.mean(). This could be helpful. . . But we don’t want the mean of a whole column—
we want the mean of the column values grouped by style. Searching online again, we landed in
dataframe.groupby(). This is amazing: pandas can group a series for you!

Here’s what we want to do: group beers by style, then compute the mean of abv and ibu in
the groups. We experimented with beers_clean.groupby('style').mean() and were amazed. . .

30

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.mean.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.groupby.html


However, one thing was bothersome: pandas computed the mean (by style) of every column,
including the id and brewery_id, which have no business being averaged. So we decided
to first drop the columns we don’t need, leaving only abv, ibu and style. We can use the
dataframe.drop() method for that. Check it out!

In [26]: beers_styles = beers_clean.drop(['Unnamed: 0','name','brewery_id','ounces',
'id'], axis=1)

In [27]: beers_styles[0:10]

Out[27]: abv ibu style
14 0.061 60.0 American Pale Ale (APA)
21 0.099 92.0 American Barleywine
22 0.079 45.0 Winter Warmer
24 0.044 42.0 American Pale Ale (APA)
25 0.049 17.0 Fruit / Vegetable Beer
26 0.049 17.0 Fruit / Vegetable Beer
27 0.049 17.0 Fruit / Vegetable Beer
28 0.070 70.0 American IPA
29 0.070 70.0 American IPA
30 0.070 70.0 American IPA

We now have a dataframe with only the numeric features abv and ibu, and the categorical feature
style. Let’s find out how many beers we have of each style—we’d like to use this information to
set the size of the style bubbles.

In [28]: style_counts = beers_styles['style'].value_counts()

In [29]: style_counts[0:10]

Out[29]: American IPA 301
American Pale Ale (APA) 153
American Amber / Red Ale 77
American Double / Imperial IPA 75
American Blonde Ale 61
American Pale Wheat Ale 61
American Porter 39
American Brown Ale 38
Fruit / Vegetable Beer 30
Hefeweizen 27
Name: style, dtype: int64

In [30]: type(style_counts)

Out[30]: pandas.core.series.Series

In [31]: len(style_counts)

Out[31]: 90

The number of beers in each style appears on each row of style_counts, sorted in decreasing
order of count. We have 90 different styles, and the most popular style is the "American IPA," with
301 beers. . .
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Discuss with your neighbor:

• What happened? We used to have 99 styles and 424 counts in the "American IPA" style. Why
is it different now?

OK. We want to characterize each style of beer with the mean values of the numeric features, abv
and ibu, within that style. Let’s get those means.

In [32]: style_means = beers_styles.groupby('style').mean()

In [33]: style_means[0:10]

Out[33]: abv ibu
style
Abbey Single Ale 0.049000 22.000000
Altbier 0.054625 34.125000
American Adjunct Lager 0.046545 11.000000
American Amber / Red Ale 0.057195 36.298701
American Amber / Red Lager 0.048063 23.250000
American Barleywine 0.099000 96.000000
American Black Ale 0.073150 68.900000
American Blonde Ale 0.050148 20.983607
American Brown Ale 0.057842 29.894737
American Dark Wheat Ale 0.052200 27.600000

Looking good! We have the information we need: the average abv and ibu by style, and the
counts by style. The only problem is that style_counts is sorted by decreasing count value, while
style_means is sorted alphabetically by style. Ugh.

Notice that style_means is a dataframe that is now using the style string as a label for each row.
Meanwhile, style_counts is a pandas series, and it also uses the style as label or index to each
element.

More online searching and we find the series.sort_index() method. It will sort our style counts
in alphabetical order of style, which is what we want.

In [34]: style_counts = style_counts.sort_index()

In [35]: style_counts[0:10]

Out[35]: Abbey Single Ale 2
Altbier 8
American Adjunct Lager 11
American Amber / Red Ale 77
American Amber / Red Lager 16
American Barleywine 2
American Black Ale 20
American Blonde Ale 61
American Brown Ale 38
American Dark Wheat Ale 5
Name: style, dtype: int64

Above, we used Matplotlib to create a scatter plot using two NumPy arrays as the x and y param-
eters. Like we saw previously with histograms, pandas also has available some plotting methods
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(calling Matplotlib internally). Scatter plots made easy!

In [36]: style_means.plot.scatter(figsize=(8,8),
x='abv', y='ibu', s=style_counts,
title='Beer ABV vs. IBU mean values by style');

That’s rad! Perhaps the bubbles are too small. We could multiply the style_counts by a factor of
5, or maybe 10? You should experiment.

But we are feeling gung-ho about this now, and decided to find a way to make the color of the
bubbles also vary with the style counts. Below, we import the colormap module of Matplotlib,
and we set our colors using the viridis colormap on the values of style_counts, then we repeat
the plot with these colors on the bubbles and some transparency. What do you think?

In [37]: from matplotlib import cm
colors = cm.viridis(style_counts.values)

In [38]: style_means.plot.scatter(figsize=(10,10),
x='abv', y='ibu', s=style_counts*20, color=colors,
title='Beer ABV vs. IBU mean values by style\n',
alpha=0.3); #alpha sets the transparency
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It looks like the most popular beers do follow a linear relationship between alcohol fraction and
IBU. We learned a lot about beer without having a sip!

Wait. . . one more thing! What if we add a text label next to the bigger bubbles, to identify the style?

OK, here we go a bit overboard, but we couldn’t help it. We played around a lot to get this version
of the plot. It uses enumerate to get pairs of indices and values from a list of style names; an if
statement to select only the large-count styles; and the iloc[] slicing method of pandas to get a
slice based on index position, and extract abv and ibu values to an (x, y) coordinate for placing
the annotation text. Are we overkeen or what!

In [39]: ax = style_means.plot.scatter(figsize=(10,10),
x='abv', y='ibu', s=style_counts*20, color=colors,
title='Beer ABV vs. IBU mean values by style\n',
alpha=0.3);

for i, txt in enumerate(list(style_counts.index.values)):
if style_counts.values[i] > 65:

ax.annotate(txt, (style_means.abv.iloc[i],style_means.ibu.iloc[i]),
fontsize=12)
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5 What we’ve learned

• You should always plot your data.
• The concepts of quantitative and categorical data.
• Plotting histograms directly on columns of dataframes, using pandas.
• Computing variance and standard deviation using NumPy built-in functions.
• The concept of median, and how to compute it with NumPy.
• Making box plots using pyplot.
• Five statistics of a box plot: the quartiles Q1, Q2 (median) and Q3 (and interquartile range

Q3�Q1), upper and lower extremes.
• Visualizing categorical data with bar plots.
• Visualizing multiple data with scatter plots and bubble charts.
• pandas is awesome!
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Recommended viewing

From "Statistics in Medicine,", a free course in Stanford Online by Prof. Kristin Sainani, we highly
recommend that you watch this lecture: * Looking at data
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Lesson 3: Lead in Lipstick

After completing Lesson 1 and Lesson 2 of “Take off with stats,” Module 2 of our course in Engi-

neering Computations, here we’ll work out a full example of what you can do with all that you’ve
learned.

This example is based on the lecture by Prof. Kristin Sainani at Stanford, “Exploring real data:
lead in lipstick,” of her online course “Statistics in Medicine,”. We followed along her narration,
searched online for the sources she cited and the data from the FDA studies, and worked out the
descriptive statistics using Python. We hope you’ll enjoy it!

1 In the news

In 2007, some alarming reports appeared in the media: a US consumer-rights group had tested
33 brand-name lipsticks, and found that 61% had detectable lead levels of 0.03 to 0.65 parts per
million (ppm). A full one-third of the lipsticks tested exceeded the lead level set by the US Food
and Drug Administration (FDA) as the limit for candy: 0.1 ppm. Here are some media reports:

• Reuters published on Oct. 12, 2007: Lipsticks contain lead, consumer group says—it quotes a
doctor as saying: “Lead builds up in the body over time and lead-containing lipstick applied
several times a day, every day, can add up to significant exposure levels.”

• CTV.ca News published FDA to examine claim of lead levels in lipstick—it quoted one mem-
ber of the Campaign for Safe Cosmetics as saying: “We want the companies to immediately
re-formulate their products to get the lead out and ultimately, really we need to change the
laws and force these companies to be accountable to women’s health.”

• The New York Times was more measured in The Claim: Some Red Lipstick Brands Contain
High Lead Levels (Nov. 13, 2007), concluding: “Studies have found that lead in lipstick is
not a cause for concern, but research is continuing.”

The FDA did carry out new studies in 2009 and 2012 to try to determine if lead content was a
concern for lipstick users. These new studies generated some new scary headlines!

• On the Washington Post: 400 lipsticks found to contain lead, FDA says—the FDA is quoted
as stating “We do not consider the lead levels we found in the lipsticks to be a safety con-
cern. . . ”

• In Time Magazine: What’s in Your Lipstick? FDA Finds Lead in 400 Shades—a campaigner
is quoted as saying: “We want to see the FDA recommend a limit based on the lowest level
a company can achieve, like candy manufacturers are required.”

Should lipstick users be concerned? Let’s fact-check those scary headlines using our stats chops
with Python!
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2 The FDA studies

We located a web page of the US Food and Drug Administration, titled Limiting Lead in Lipstick
and Other Cosmetics, that describes their efforts to assess the safety concerns from lead impurities
in cosmetics. The web page includes data tables for the initial study in 2009, with 22 lipsticks, and
the expanded study in 2012, with 400 lipsticks.

We copied these tables from the web page and created CSV files with the data. If you have a clone
of all our lesson files, you already have the data. But if you downloaded this notebook on its own,
you may need to get the data separately. See the Note below.

Let’s begin by loading our Python libraries for data analysis: numpy, pandas and pyplot. We’ll also
load the rcParams module for setting Matplotlib’s plotting parameters, and set the font family and
size to serif 16 points.

In [1]: import numpy
import pandas
from matplotlib import pyplot
%matplotlib inline

#Import rcParams to set font styles

from matplotlib import rcParams

#Set font style and size

rcParams['font.family'] = 'serif'
rcParams['font.size'] = 16

Note: We’ll be reading the data from CSV files using pandas. If you don’t have the data files
locally, change the code in the cell below to read the data from the files hosted in our repository:

URL = 'http://go.gwu.edu/engcomp2data3a'
leadlips2009 = pandas.read_csv(URL)

In [2]: # Load the FDA 2009 data set using pandas, and assign it to a dataframe

leadlips2009 = pandas.read_csv("../../data/FDA2009-lipstickdata.csv")

As always, we take a quick peek at the data, now saved in a pandas dataframe named
leadlips2009, and then we get a view of its distribution by plotting a histogram of the column
containing the lead content.

In [3]: leadlips2009[0:5]

Out[3]: count Sample Brand Parent company Pb ppm
0 1 1a Cover Girl Procter & Gamble 3.06
1 2 1b Cover Girl Procter & Gamble 3.05
2 3 2 Revlon Revlon 2.38
3 4 3 Cover Girl Procter & Gamble 2.24
4 5 4 Body Shop L'Oreal 1.79

In [4]: leadlips2009.hist(column='Pb ppm', bins=4, edgecolor='white')
pyplot.title('Lead levels in lipstick, n=22 (2009) \n');
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Above, we used the built-in plotting capability of pandas. Just for kicks, let’s get the same plot but
using pyplot directly. To do that, remember that we need the data in a NumPy array, for which
we use the Series.values method.

In [5]: lead2009 = leadlips2009['Pb ppm'].values

In [6]: pyplot.figure(figsize=(6,4))
pyplot.hist(lead2009, bins=4, color='#3498db', histtype='bar', edgecolor='white')
pyplot.title('Lead levels in lipstick, n=22 (2009) \n')
pyplot.xlabel('ppm')
pyplot.ylabel('Count');

Nothing new here: the histograms look the same, except for style. If you are following along with
Sainani’s lecture, however, you’ll note some differences. We confirm that the data is the same by
getting the descriptive statistics shown 4-min into the video:

In [7]: print('The mean value is {:.2f}'.format(leadlips2009['Pb ppm'].mean()))
print('The median is {:.2f}'.format(leadlips2009['Pb ppm'].median()))
print('The standard deviation is {:.2f}'.format(leadlips2009['Pb ppm'].std()))
print('The maximum value is {:.2f}'.format(leadlips2009['Pb ppm'].max()))

The mean value is 1.07
The median is 0.73
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The standard deviation is 0.96
The maximum value is 3.06

All of these match the statistics shown in the video. We do see some slight differences in the
percentile values, however. Check them out:

In [8]: print('The 99 percentile is {:.2f}'.format(leadlips2009['Pb ppm'].quantile(.99)))
print('The 95 percentile is {:.2f}'.format(leadlips2009['Pb ppm'].quantile(.95)))
print('The 90 percentile is {:.2f}'.format(leadlips2009['Pb ppm'].quantile(.90)))
print('The 75 percentile is {:.2f}'.format(leadlips2009['Pb ppm'].quantile(.75)))

The 99 percentile is 3.06
The 95 percentile is 3.02
The 90 percentile is 2.37
The 75 percentile is 1.69

Challenge question Despite the small difference in some percentile values from those shown on
the video, we do think this is the same data that Sainani uses in her example. Look carefully at
the histograms: can you explain the differences? (Play around with the plots here as much as you
need to explain it.)

OK. Let’s load the data for the extended study in 2012.

Note: If you don’t have the data files locally, change the code in the cell below to read the data
from the files hosted in our repository:

URL = 'http://go.gwu.edu/engcomp2data3b'
leadlips2012 = pandas.read_csv(URL)

In [9]: # Load the FDA 2012 data set using pandas, and assign it to a dataframe

leadlips2012 = pandas.read_csv("../../data/FDA2012-lipstickdata.csv")

Take a quick peek at the first few rows of the dataframe we just created, and then make a histogram
of the column containing the lead values (notice that it has a different label than the previous
dataframe).

In [10]: leadlips2012[0:5]

Out[10]: Sample # Brand Parent company Lead (ppm)
0 1 Maybelline L'Oreal USA 7.19
1 2 L'Oreal L'Oreal USA 7.00
2 3 NARS Shiseido 4.93
3 4 Cover Girl Queen Procter & Gamble 4.92
4 5 NARS Shiseido 4.89

In [11]: leadlips2012.hist(column='Lead (ppm)', bins=10, edgecolor='white')
pyplot.title('Lead levels in lipstick, n=400 (2012) \n');
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Now, let’s get the descriptive statistics for this data set, and confirm that they match with those
shown in Dr. Sainani’s video.

In [12]: print('The mean value is {:.2f}'.format(leadlips2012['Lead (ppm)'].mean()))
print('The median is {:.2f}'.format(leadlips2012['Lead (ppm)'].median()))
print('The standard deviation is {:.2f}'.format(leadlips2012['Lead (ppm)'].std()))
print('The maximum value is {:.2f}'.format(leadlips2012['Lead (ppm)'].max()))

The mean value is 1.11
The median is 0.89
The standard deviation is 0.97
The maximum value is 7.19

The mean value, median, and standard deviation did not change much between the 2009 and 2012
studies, even though the earlier study only tested 22 samples. As Prof. Sainani points out, this
goes to show that you can begin to describe a feature even with modest sample sizes.

The maximum value in the second study was a lot higher: 7.19 compared to 3.06. The reason for
seeing this higher maximum value in the later study is that, for a right skewed distribution like this
one, there are infrequent occurrences of a higher concentration of lead. These start to be detected
with larger sample sizes.

Next, we compute a few percentiles (noticing slight differences with the values shown by Sainani).

In [13]: print('The 99 percentile is {:.2f}'.format(leadlips2012['Lead (ppm)']
.quantile(.99)))
print('The 95 percentile is {:.2f}'.format(leadlips2012['Lead (ppm)']
.quantile(.95)))
print('The 90 percentile is {:.2f}'.format(leadlips2012['Lead (ppm)']
.quantile(.90)))
print('The 75 percentile is {:.2f}'.format(leadlips2012['Lead (ppm)']
.quantile(.75)))

The 99 percentile is 4.89
The 95 percentile is 2.74
The 90 percentile is 2.22
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The 75 percentile is 1.49

In the previous lesson, you learned to make box plots using pyplot, which requires extracting the
values of the data series of interest into NumPy arrays. It turns out, pandas can make box plots
directly with a column of the dataframe.

In [14]: leadlips2012.boxplot(column='Lead (ppm)', figsize=(6,8))
pyplot.title('Lead levels in lipstick, n=400 (2012) \n');

The box plot also indicates a right skewed distribution, and shows a number of outliers on the
high end of the range: some lipsticks have an especially high level of lead.

3 Lead exposure from lipstick

A European study of exposure to various cosmetic products [Ref. 2] offers some useful statistics
about lipstick use. In figure 6, the paper shows a histogram of lipstick applied by the participants
in the study. The distribution is right skewed: most users apply a moderate amount of lipstick
daily, but there are a few heavy users in the tail of the distribution. The number of participants
was 30,000, and the summary statistics are:

• mean value = 24.61 mg/day,
• median = 17.11 mg/day,
• minimum = 0.13 mg/day,
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• maximum = 217.53 mg/day
• 95th percentile = 72.51 mg/day

Prof. Sainani suggests the following exercise: suppose that users ingest half of the lipstick they
apply daily—seems like a conservative estimate, given that some lipstick will end up on cups,
napkins, and (as Sainani amusingly points out) other people. We’d like to calculate:

1. the typical lead exposure from lipstick, using the medians
2. the highest daily lead exposure from lipstick, using the maxima

From the 2012 FDA study of lead in lipstick: the median is 0.89 ppm (µg/g) and the maximum is
7.19 ppm. From the European study on exposure to cosmetics, the median daily usage of lipstick
is 17.11 mg, and the maximum is 217.53. Now. . . keep your units straight!

1µg = 10�3mg = 10�6g

In [15]: # Typical user: 0.89 µg/g * 17.11 mg/day (divide by 1000 to get µg)
print('The typical daily exposure to lead from lipstick is {:.4f} µg/day.'
.format(0.89 *17.11/1000))
print('Half of this amount is ingested: {:.4f} µg/day.'
.format(0.89 *17.11/1000/2))

The typical daily exposure to lead from lipstick is 0.0152 µg/day.
Half of this amount is ingested: 0.0076 µg/day.

In [16]: # Maximum usage: 7.19 µg/g * 217.53 mg/day / 1000 to get µg
print('The maximum daily exposure to lead from lipstick is {:.2f} µg/day.'
.format(7.19 *217.53/1000))
print('Half of this amount is ingested: {:.2f} µg/day.'
.format(7.19 *217.53/1000/2))

The maximum daily exposure to lead from lipstick is 1.56 µg/day.
Half of this amount is ingested: 0.78 µg/day.

The maximum daily exposure is 100 times larger than the typical exposure, based on the median.
Note that this maximum occurs for one user over 30,000 (the size of the study sample), and one
lipstick over 400—so it’s a chance of one in 12 million!

4 Is this bad?

The US Food and Drug Administration provides a recommended maximum lead level of 0.1 ppm in
candy to be consumed by small children [3]. But most food products are well below the maximum.
For example, the FDA data on 40 samples of milk chocolate in the years 1991–2002 showed a mean
lead level of 0.025 ppm [4]. That’s of course much lower than the concentration of lead in lipstick,
but the consumption of chocolate is much higher! Forbes reported that the average American eats
about 9.5 lbs (4.3 kg) of chocolate each year [6].

In [17]: print('The average American consumes {:.1f} grams of chocolate per day.'
.format(4.3*1000/365))
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print('This amounts to {:.2f} µg of lead exposure from chocolate (mean of
FDA data).'.format(4.3*1000/365*0.025))

The average American consumes 11.8 grams of chocolate per day.
This amounts to 0.29 µg of lead exposure from chocolate (mean of FDA data).

Compared to the median exposure to lead from lipstick of 0.0076 µg per day, the exposure from
chocolate is almost 40 times higher!

Clearly the consumer group that generated all those headlines was scaremongering. And now
you have the tools to fact-check many of those scary health-related “fake news.”
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5.1 Recommended viewing

This lesson was based on the followign lecture from “Statistics in Medicine,”, a free course in
Stanford Online by Prof. Kristin Sainani: Exploring real data: lead in lipstick
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Lesson 4: Life expectancy and wealth

Welcome to Lesson 4 of the second module in Engineering Computations. This module gives you
hands-on data analysis experience with Python, using real-life applications. The first three lessons
provide a foundation in data analysis using a computational approach. They are:

1. Lesson 1: Cheers! Stats with beers.
2. Lesson 2: Seeing stats in a new light.
3. Lesson 3: Lead in lipstick.

You learned to do exploratory data analysis with data in the form of arrays: NumPy has built-
in functions for many descriptive statistics, making it easy! And you also learned to make data
visualizations that are both good-looking and effective in communicating and getting insights
from data.

But NumPy can’t do everything. So we introduced you to pandas, a Python library written espe-
cially for data analysis. It offers a very powerful new data type: the DataFrame—you can think of
it as a spreadsheet, conveniently stored in one Python variable.

In this lesson, you’ll dive deeper into pandas, using data for life expectancy and per-capita income
over time, across the world.

1 The best stats you’ve ever seen

Hans Rosling was a professor of international health in Sweeden, until his death in Februrary of
this year. He came to fame with the thrilling TED Talk he gave in 2006: “The best stats you’ve ever
seen” (also on YouTube, with ads). We highly recommend that you watch it!

In that first TED Talk, and in many other talks and even a BBC documentary (see the trailer on
YouTube), Rosling uses data visualizations to tell stories about the world’s health, wealth, inequal-
ity and development. Using software, he and his team created amazing animated graphics with
data from the United Nations and World Bank.

According to a blog post by Bill and Melinda Gates after Prof. Rosling’s death, his message was
simple: “that the world is making progress, and that policy decisions should be grounded in data.”

In this lesson, we’ll use data about life expectancy and per-capita income (in terms of the gross do-
mestic product, GDP) around the world. Visualizing and analyzing the data will be our gateway
to learning more about the world we live in.

Let’s begin! As always, we start by importing the Python libraries for data analysis (and setting
some plot parameters).

45

http://go.gwu.edu/engcomp2lesson1
http://go.gwu.edu/engcomp2lesson2
http://go.gwu.edu/engcomp2lesson3
https://en.wikipedia.org/wiki/Hans_Rosling
https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen
https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen
https://youtu.be/RUwS1uAdUcI
https://youtu.be/jbkSRLYSojo
https://www.gatesnotes.com/About-Bill-Gates/Remembering-Hans-Rosling


In [1]: import numpy
import pandas
from matplotlib import pyplot
%matplotlib inline

#Import rcParams to set font styles

from matplotlib import rcParams

#Set font style and size

rcParams['font.family'] = 'serif'
rcParams['font.size'] = 16

2 Load and inspect the data

We found a website called The Python Graph Gallery, which has a lot of data visualization exam-
ples. Among them is a Gapminder Animation, an animated GIF of bubble charts in the style of
Hans Rosling. We’re not going to repeat the same example, but we do get some ideas from it and
re-use their data set. The data file is hosted on their website, and we can read it directly from there
into a pandas dataframe, using the URL.

In [2]: # Read a dataset for life expectancy from a CSV file hosted online

url = 'https://python-graph-gallery.com/wp-content/uploads/gapminderData.csv'
life_expect = pandas.read_csv(url)

The first thing to do always is to take a peek at the data. Using the shape attribute of the dataframe,
we find out how many rows and columns it has. In this case, it’s kind of big to print it all out, so
to save space we’ll print a small portion of life_expect. You can use a slice to do this, or you can
use the DataFrame.head() method, which returns by default the first 5 rows.

In [3]: life_expect.shape

Out[3]: (1704, 6)

In [4]: life_expect.head()

Out[4]: country year pop continent lifeExp gdpPercap
0 Afghanistan 1952 8425333.0 Asia 28.801 779.445314
1 Afghanistan 1957 9240934.0 Asia 30.332 820.853030
2 Afghanistan 1962 10267083.0 Asia 31.997 853.100710
3 Afghanistan 1967 11537966.0 Asia 34.020 836.197138
4 Afghanistan 1972 13079460.0 Asia 36.088 739.981106

You can see that the columns hold six types of data: the country, the year, the population, the
continent, the life expectancy, and the per-capita gross domestic product (GDP). Rows are indexed
from 0, and the columns each have a label (also called an index). Using labels to access data is one
of the most powerful features of pandas.

In the first five rows, we see that the country repeats (Afghanistan), while the year jumps by five.
We guess that the data is arranged in blocks of rows for each country.
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We can get a useful summary of the dataframe with the DataFrame.info() method: it tells us the
number of rows and the number of columns (matching the output of the shape attribute) and then
for each column, it tells us the number of rows that are populated (have non-null entries) and the
type of the entries; finally it gives a breakdown of the types of data and an estimate of the memory
used by the dataframe.

In [5]: life_expect.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1704 entries, 0 to 1703
Data columns (total 6 columns):
country 1704 non-null object
year 1704 non-null int64
pop 1704 non-null float64
continent 1704 non-null object
lifeExp 1704 non-null float64
gdpPercap 1704 non-null float64
dtypes: float64(3), int64(1), object(2)
memory usage: 80.0+ KB

The dataframe has 1704 rows, and every column has 1704 non-null entries, so there is no miss-
ing data. Let’s find out how many entries of the same year appear in the data. In Lesson
1 of this module, you already learned to extract a column from a data frame, and use the
series.value_counts() method to answer our question.

In [6]: life_expect['year'].value_counts()

Out[6]: 2007 142
2002 142
1997 142
1992 142
1987 142
1982 142
1977 142
1972 142
1967 142
1962 142
1957 142
1952 142
Name: year, dtype: int64

We have an even 142 occurrences of each year in the dataframe. The distinct entries must corre-
spond to each country. It also is clear that we have data every five years, starting 1952 and ending
2007. We think we have a pretty clear picture of what is contained in this data set. What next?
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3 Grouping data for analysis

We have a dataframe with a country column, where countries repeat in blocks of rows, and a year
column, where sets of 12 years (increasing by 5) repeat for every country. Tabled data commonly
has this interleaved structure. And data analysis often involves grouping the data in various ways,
to transform it, compute statistics, and visualize it.

With the life expectancy data, it’s natural to want to analyze it by year (and look at geographical
differences), and by country (and look at historical differences).

In Lesson 2 of this module, we already learned how useful it was to group the beer data by style,
and calculate means within each style. Let’s get better acquainted with the powerful groupby()
method for dataframes. First, grouping by the values in the year column:

In [7]: by_year = life_expect.groupby('year')

In [8]: type(by_year)

Out[8]: pandas.core.groupby.DataFrameGroupBy

Notice that the type of the new variable by_year is different: it’s a GroupBy object, which—without
making a copy of the data—is able to apply operations on each of the groups.

The GroupBy.first() method, for example, returns the first row in each group—applied to our
grouping by_year, it shows the list of years (as a label), with the first country that appears in each
year-group.

In [9]: by_year.first()

Out[9]: country pop continent lifeExp gdpPercap
year
1952 Afghanistan 8425333.0 Asia 28.801 779.445314
1957 Afghanistan 9240934.0 Asia 30.332 820.853030
1962 Afghanistan 10267083.0 Asia 31.997 853.100710
1967 Afghanistan 11537966.0 Asia 34.020 836.197138
1972 Afghanistan 13079460.0 Asia 36.088 739.981106
1977 Afghanistan 14880372.0 Asia 38.438 786.113360
1982 Afghanistan 12881816.0 Asia 39.854 978.011439
1987 Afghanistan 13867957.0 Asia 40.822 852.395945
1992 Afghanistan 16317921.0 Asia 41.674 649.341395
1997 Afghanistan 22227415.0 Asia 41.763 635.341351
2002 Afghanistan 25268405.0 Asia 42.129 726.734055
2007 Afghanistan 31889923.0 Asia 43.828 974.580338

All the year-groups have the same first country, Afghanistan, so what we see is the population,
life expectancy and per-capita income in Afghanistan for all the available years. Let’s save that
into a new dataframe, and make a line plot of the population and life expectancy over the years.

In [10]: Afghanistan = by_year.first()

In [11]: Afghanistan['pop'].plot(figsize=(8,4),
title='Population of Afghanistan');
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In [12]: Afghanistan['lifeExp'].plot(figsize=(8,4),
title='Life expectancy of Afghanistan');

Do you notice something interesting? It’s curious to see that the population of Afghanistan took
a fall after 1977. We have data every 5 years, so we don’t know exactly when this fall began, but
it’s not hard to find the answer online. The USSR invaded Afghanistan in 1979, starting a conflict
that lasted 9 years and resulted in an estimated death toll of one million civilians and 100,000
fighters [1]. Millions fled the war to neighboring countries, which may explain why we se a dip in
population, but not a dip in life expectancy.

We can also get some descriptive statistics in one go with the DataFrame.describe() method of
pandas.

In [13]: Afghanistan.describe()

Out[13]: pop lifeExp gdpPercap
count 1.200000e+01 12.000000 12.000000
mean 1.582372e+07 37.478833 802.674598
std 7.114583e+06 5.098646 108.202929
min 8.425333e+06 28.801000 635.341351
25% 1.122025e+07 33.514250 736.669343
50% 1.347371e+07 39.146000 803.483195
75% 1.779529e+07 41.696250 852.572136
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max 3.188992e+07 43.828000 978.011439

Let’s now group our data by country, and use the GroupBy.first() method again to get the first
row of each group-by-country. We know that the first year for which we have data is 1952, so let’s
immediately save that into a new variable named year1952, and keep playing with it. Below, we
double-check the type of year1952, print the first five rows using the head() method, and get the
minimum value of the population column.

In [14]: by_country = life_expect.groupby('country')

The first year for all groups-by-country is 1952. Let’s save that first group into a new dataframe,
and keep playing with it.

In [15]: year1952 = by_country.first()

In [16]: type(year1952)

Out[16]: pandas.core.frame.DataFrame

In [17]: year1952.head()

Out[17]: year pop continent lifeExp gdpPercap
country
Afghanistan 1952 8425333.0 Asia 28.801 779.445314
Albania 1952 1282697.0 Europe 55.230 1601.056136
Algeria 1952 9279525.0 Africa 43.077 2449.008185
Angola 1952 4232095.0 Africa 30.015 3520.610273
Argentina 1952 17876956.0 Americas 62.485 5911.315053

In [18]: year1952['pop'].min()

Out[18]: 60011.0

4 Visualizing the data

In Lesson 2 of this module, you learned to make bubble charts, allowing you to show at least three
features of the data in one plot. We’d like to make a bubble chart of life expectancy vs. per-capita
GDP, with the size of the bubble proportional to the population. To do that, we’ll need to extract
the population values into a NumPy array.

In [19]: populations = year1952['pop'].values

If you use the populations array unmodified as the size of the bubbles, they come out huge and
you get one solid color covering the figure (we tried it!). To make the bubble sizes reasonable, we
divide by 60,000—an approximation to the minimum population—so the smallest bubble size is
about 1 pt. Finally, we choose a logarithmic scale in the absissa (the GDP). Check it out!

In [20]: year1952.plot.scatter(figsize=(12,8),
x='gdpPercap', y='lifeExp', s=populations/60000,
title='Life expectancy in the year 1952',
edgecolors="white")

pyplot.xscale('log');
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That’s neat! But the Rosling bubble charts include one more feature in the data: the continent of
each country, using a color scheme. Can we do that?

Matplotlib colormaps offer several options for qualitative data, using discrete colors mapped to a
sequence of numbers. We’d like to use the Accent colormap to code countries by continent. But
we need a numeric code to assign to each continent, so it can be mapped to a color.

The Gapminder Animation example at The Python Graph Gallery has a good tip: using the pandas
Categorical data type, which associates a numerical value for each category in a column containing
qualitative (categorical) data.

Let’s see what we get if we apply pandas.Categorical() to the continent column:

In [21]: pandas.Categorical(year1952['continent'])

Out[21]: [Asia, Europe, Africa, Africa, Americas, ..., Asia, Asia, Asia, Africa, Africa]
Length: 142
Categories (5, object): [Africa, Americas, Asia, Europe, Oceania]

Right. We see that the continent column has repeated entries of 5 distinct categories, one for each
continent. In order, they are: Africa, Americas, Asia, Europe, Oceania.

Applying pandas.Categorical() to the continent column will create an integer value—the code
of the category—associated to each entry. We can then use these integer values to map to the colors
in a colormap. The trick will be to extract the codes attribute of the Categorical data and save that
into a new variable named colors (a NumPy array).
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In [22]: colors = pandas.Categorical(year1952['continent']).codes

In [23]: type(colors)

Out[23]: numpy.ndarray

In [24]: len(colors)

Out[24]: 142

In [25]: print(colors)

[2 3 0 0 1 4 3 2 2 3 0 1 3 0 1 3 0 0 2 0 1 0 0 1 2 1 0 0 0 1 0 3 1 3 3 0 1
1 0 1 0 0 0 3 3 0 0 3 0 3 1 0 0 1 1 2 3 3 2 2 2 2 3 2 3 1 2 2 0 2 2 2 2 0
0 0 0 0 2 0 0 0 1 2 3 0 0 2 0 2 3 4 1 0 0 3 2 2 1 1 1 2 3 3 1 0 3 0 0 2 0
3 0 2 3 3 0 0 3 2 0 0 3 3 2 2 0 2 0 1 0 3 0 3 1 1 1 2 2 2 0 0]

You see that colors is a NumPy array of 142 integers that can take the values: 0, 1, 2, 3, 4.
They are the codes to continent categories: Africa, Americas, Asia, Europe, Oceania. For
example, the first entry is 2, corresponding to Asia, the continent of Afghanistan.

Now we’re ready to re-do our bubble chart, using the array colors to set the color of the bubble
(according to the continent for the given country).

In [26]: year1952.plot.scatter(figsize=(12,8),
x='gdpPercap', y='lifeExp', s=populations/60000,
c=colors, cmap='Accent',

title='Life expectancy vs. per-capita GDP in the year 1952,\n color-coded by continent',
logx = 'True',
ylim = (25,85),
xlim = (1e2, 1e5),
edgecolors="white",
alpha=0.6);
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Note: We encountered a bug in pandas scatter plots! The labels of the x-axis disappeared
when we added the colors to the bubbles. We tried several things to fix it, like adding the line
pyplot.xlabel("GDP per Capita") at the end of the cell, but nothing worked. Searching online,
we found an open issue report for this problem.

Discuss with your neighbor: What do you see in the colored bubble chart, in regards to 1952
conditions in different countries and different continents? Can you guess some countries? Can
you figure out which color corresponds to which continent?

5 Spaghetti plot of life expectancy

The bubble plot shows us that 1952 life expectancies varied quite a lot from country to country:
from a minimum of under 30 years, to a maximum under 75 years. The first part of Prof. Rosling’s
dying message is "that the world is making progress." Is it the case that countries around the world
all make progress in life expectancy over the years?

We have an idea: what if we plot a line of life expectancy over time, for every country in the data
set? It could be a bit messy, but it may give an overall view of the world-wide progress in life
expectancy.

Below, we’ll make such a plot, with 142 lines: one for each country. This type of graphic is called
a spaghetti plot . . . for obvious reasons!
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To add a line for each country on the same plot, we’ll use a for-statement and the by_country
groups. For each country-group, the line plot takes the series year and lifeExp as (x, y) coordi-
nates. Since the spaghetti plot is quite busy, we also took off the box around the plot. Study this
code carefully.

In [27]: pyplot.figure(figsize=(12,8))

for key,group in by_country:
pyplot.plot(group['year'], group['lifeExp'], alpha=0.4)

pyplot.title('Life expectancy in the years 1952–2007, across 142 countries')
pyplot.box(on=None);

6 Dig deeper and get insights from the data

The spaghetti plot shows a general upwards tendency, but clearly not all countries have a mono-
tonically increasing life expectancy. Some show a one-year sharp drop (but remember, this data
jumps every 5 years), while others drop over several years. And something catastrophic happened
to one country in 1977, and to another country in 1992. Let’s investigate this!

We’d like to explore the data for a particular year: first 1977, then 1992. For those years, we can
get the minimum life expectancy, and then find out which country experienced it.

To access a particular group in GroupBy data, pandas has a get_group(key) method, where key
is the label of the group. For example, we can access yearly data from the by_year groups using
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the year as key. The return type will be a dataframe, containing the same columns as the original
data.

In [28]: type(by_year.get_group(1977))

Out[28]: pandas.core.frame.DataFrame

In [29]: type(by_year['lifeExp'].get_group(1977))

Out[29]: pandas.core.series.Series

Now we can find the minimum value of life expectancy at the specific years of interest, using
the Series.min() method. Let’ do this for 1977 and 1992, and save the values in new Python
variables, to reuse later.

In [30]: min_lifeExp1977 = by_year['lifeExp'].get_group(1977).min()
min_lifeExp1977

Out[30]: 31.219999999999999

In [31]: min_lifeExp1992 = by_year['lifeExp'].get_group(1992).min()
min_lifeExp1992

Out[31]: 23.599

Those values of life expectancy are just terrible! Are you curious to know what countries experi-
enced the dramatic drops in life expectancy?

We can find the row index of the minimum value, thanks to the pandas.Series.idxmin() method.
The row indices are preserved from the original dataframe life_expect to its groupings, so the
index will help us identify the country. Check it out.

In [32]: by_year['lifeExp'].get_group(1977).idxmin()

Out[32]: 221

In [33]: life_expect['country'][221]

Out[33]: 'Cambodia'

In [34]: by_country.get_group('Cambodia')

Out[34]: continent gdpPercap lifeExp pop year
216 Asia 368.469286 39.417 4693836.0 1952
217 Asia 434.038336 41.366 5322536.0 1957
218 Asia 496.913648 43.415 6083619.0 1962
219 Asia 523.432314 45.415 6960067.0 1967
220 Asia 421.624026 40.317 7450606.0 1972
221 Asia 524.972183 31.220 6978607.0 1977
222 Asia 624.475478 50.957 7272485.0 1982
223 Asia 683.895573 53.914 8371791.0 1987
224 Asia 682.303175 55.803 10150094.0 1992
225 Asia 734.285170 56.534 11782962.0 1997
226 Asia 896.226015 56.752 12926707.0 2002
227 Asia 1713.778686 59.723 14131858.0 2007
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We searched online to learn what was happening in Cambodia to cause such a drop in life ex-
pectancy in the 1970s. Indeed, Cambodia experienced a mortality crisis due to several factors that
combined into a perfect storm: war, ethnic cleansing and migration, collapse of the health system,
and cruel famine [2]. It’s hard for a country to keep vital statistics under such circumstances, and
certainly there are uncertainties in the data for Cambodia in the 1970s. However, various sources
report a life expectancy there in 1977 that was under 20 years. See, for example, the World Bank’s
interactive web page on Cambodia.

There is something strange with the data from the The Python Graph Gallery. Is it wrong? Maybe
they are giving us average life expectancy in a five-year period. Let’s look at the other dip in life
expectancy, in 1992.

In [35]: by_year['lifeExp'].get_group(1992).idxmin()

Out[35]: 1292

In [36]: life_expect['country'][1292]

Out[36]: 'Rwanda'

In [37]: by_country.get_group('Rwanda')

Out[37]: continent gdpPercap lifeExp pop year
1284 Africa 493.323875 40.000 2534927.0 1952
1285 Africa 540.289398 41.500 2822082.0 1957
1286 Africa 597.473073 43.000 3051242.0 1962
1287 Africa 510.963714 44.100 3451079.0 1967
1288 Africa 590.580664 44.600 3992121.0 1972
1289 Africa 670.080601 45.000 4657072.0 1977
1290 Africa 881.570647 46.218 5507565.0 1982
1291 Africa 847.991217 44.020 6349365.0 1987
1292 Africa 737.068595 23.599 7290203.0 1992
1293 Africa 589.944505 36.087 7212583.0 1997
1294 Africa 785.653765 43.413 7852401.0 2002
1295 Africa 863.088464 46.242 8860588.0 2007

The World Bank’s interactive web page on Rwanda gives a life expectancy of 28.1 in 1992, and even
lower in 1993, at 27.6 years. This doesn’t match the value from the data set we sourced from The
Python Graph Gallery, which gives 23.6—and since this value is lower than the minimum value
given by the World Bank, we conclude that the discepancy is not caused by 5-year averaging.

7 Checking data quality

All our work here started with loading a data set we found online. What if this data set has quality
problems?

Well, nothing better than asking the author of the web source for the data. We used Twitter to
communicate with the author of The Python Graph Gallery, and he replied with a link to his
source: a data package used for teaching a course in Exploratory Data Analysis at the University
of British Columbia.
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In [38]: %%html
<blockquote class="twitter-tweet" data-lang="en"><p lang="en" dir="ltr">...

Note one immediate outcome of our reaching out to the author of The Python Graph Gallery: he
realized he was not citing the source of his data [3], and promised to add proper credit. It’s always
good form to credit your sources!

We visited the online repository of the data source, and posted an issue report there, with our
questions about data quality. The author promptly responded, saying that her source was the
Gapminder.org website—Gapminder is the non-profit founded by Hans Rosling to host public
data and visualizations. She also said: “I don’t doubt there could be data quality problems! It should
definitely NOT be used as an authoritative source for life expectancy.”

So it turns out that the data we’re using comes from a set of tools meant for teaching, and is not
up-to-date with the latest vital statistics. The author ended up adding a warning to make this clear
to visitors of the repository on GitHub.

This is a wonderful example of how people collaborate online via the open-source model.

Note: For the most accurate data, you can visit the website of the World Bank.

8 Using widgets to visualize interactively

One more thing! This whole exploration began with our viewing the 2006 TED Talk by Hans
Rosling: “The best stats you’ve ever seen”. One of the most effective parts of the presentation is
seeing the animated bubble chart, illustrating how countries became healthier and richer over time.
Do you want to make something like that?

You can! Introducing Jupyter Widgets. The magic of interactive widgets is that they tie together
the running Python code in a Jupyter notebook with Javascript and HTML running in the browser.
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You can use widgets to build interactive controls on data visualizations, with buttons, sliders, and
more.

To use widgets, the first step is to import the widgets module.

In [39]: from ipywidgets import widgets

After importing widgets, you have available several UI (User Interaction) elements. One of our
favorites is a Slider: an interactive sliding button. Here is a default slider that takes integer values,
from 0 to 100 (but does nothing):

In [40]: widgets.IntSlider()

A Jupyter Widget

What we’d like to do is make an interactive visualization of bubble charts, with the year in a
slider, so that we can run forwards and backwards in time by sliding the button, watching our
plot update the bubbles in real time. Sound like magic? It almost is.

The magic happens when you program what should happen when the value in the slider changes.
A typical scenario is having a function that is executed with the value in the slider, interactively.
To create that, we need two things:

1. A function that will be called with the slider values, and
2. A call to an interaction function from the ipywidgets package.

Several interaction functions are available, for different actions you expect from the user: a click, a
text entered in a box, or sliding the button on a slider. You will need to explore the Jupyter Widgets
documentation [4] to learn more.

For this example, we’ll be using a slider, a plotting function that makes our bubble chart, and the
.interact() function to call our plotting function with each value of the slider.

We do everything in one cell below. The first line creates an integer-value slider with our known
years—from a minimum 1952, to a maximum 2007, stepping by 5—and assigns it to the variable
name slider.

Next, we define the function roslingplot(), which re-calculates the array of population values,
gets the year-group we need from the by_year GroupBy object, and makes a scater plot of life ex-
pectancy vs. per-capita income, like we did above. The populations array (divided by 60,000) sets
the size of the bubble, and the previously defined colors array sets the color coding by continent.

We also removed the colorbar (which added little information), and added the option
sharex=False following the workaround suggested by someone on the open issue report for the
plotting bug we mentioned above.

The last line in the cell below is a call to .interact(), passing our plotting function and the slider
value assigned to its argument, year. Watch the magic happen!

In [41]: slider = widgets.IntSlider(min=1952, max=2007, step=5)

def roslingplot(year):
populations = by_year.get_group(year)['pop'].values
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by_year.get_group(year).plot.scatter(figsize=(12,8),
x='gdpPercap', y='lifeExp', s=populations/60000,
c=colors, cmap='Accent',
title='Life expectancy vs per-capita GDP in the year '+ str(year)+'\n',
logx = 'True',
ylim = (25,85),
xlim = (1e2, 1e5),
edgecolors="white",
alpha=0.6,
colorbar=False,
sharex=False)

pyplot.show();

widgets.interact(roslingplot, year=slider);

A Jupyter Widget
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