## Novel Aerosol Phase Extraction Method for the Determination of Ca, K, Mg and Na in Biodiesel Through Inductively Coupled Plasma Atomic Emission Spectrometry

Raquel Sánchez, Salvador Maestre, Soledad Prats, José-Luis Todolí\*

University of Alicante, Department of Analytical Chemistry, Nutrition and Food Sciences, P.O. Box 99, 03080, Alicante, Spain

## Table of contents:

| Table S1  | Concentration values for the biodiesel certified reference material                   |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------|--|--|--|--|--|
|           | obtained for Ca, K, Mg and Na by applying the two evaluated                           |  |  |  |  |  |
|           | extraction procedures.                                                                |  |  |  |  |  |
| Table S2  | Statistical comparison of a measurement results on a certified reference              |  |  |  |  |  |
|           | material with the certified value                                                     |  |  |  |  |  |
| Table S3  | Relative standard uncertainty contributions and expanded relative                     |  |  |  |  |  |
|           | uncertainty for measurement of Na, K, Ca and Mg in biodiesel samples                  |  |  |  |  |  |
| Figure S1 | Effect of the gas flow rate on the recovery.                                          |  |  |  |  |  |
| Figure S2 | Effect of the liquid flow rate (Q <sub>l</sub> ) and extraction time on the recovery. |  |  |  |  |  |
| Figure S3 | Effect of nitric acid concentration on the recovery.                                  |  |  |  |  |  |
| Figure S4 | Effect of the aqueous to organic phase mass ratio on the emission                     |  |  |  |  |  |
|           | intensity.                                                                            |  |  |  |  |  |

Table S1. Concentration values for the biodiesel certified reference material (10.0  $\pm$  0.1 mg kg<sup>-1</sup>) obtained for Ca, K, Mg and Na by applying both extraction procedures (Mean  $\pm$  s).

|    | Reference extraction procedure | Aerosol phase procedure |  |  |
|----|--------------------------------|-------------------------|--|--|
| Ca | $10.6 \pm 0.3$                 | $10.02 \pm 0.03$        |  |  |
| K  | $9.8 \pm 0.3$                  | $10.021 \pm 0.008$      |  |  |
| Mg | $9.87 \pm 0.12$                | $9.995 \pm 0.007$       |  |  |
| Na | $9.9 \pm 0.3$                  | $9.999 \pm 0.019$       |  |  |
|    |                                |                         |  |  |

 Table S2. Statistical comparison of a measurement results on a certified reference

 material with the certified value.

|              | Ca   | K    | Mg    | Na     |
|--------------|------|------|-------|--------|
| $\Delta m$   | 0.02 | 0.02 | 0.005 | 0.0006 |
| $U_{\Delta}$ | 0.10 | 0.10 | 0.100 | 0.1008 |

Table S3. Relative standard uncertainty contributions and expanded relative uncertainty for measurement of Na, K, Ca and Mg in biodiesel samples.

|                                          | Ca      | Κ       | Mg      | Na      |
|------------------------------------------|---------|---------|---------|---------|
|                                          |         |         |         |         |
| ucal                                     | 0.786 % | 0.538 % | 0.628 % | 0.533 % |
|                                          |         |         |         |         |
| $u_{ m ip}$                              | 0.032 % | 0.006 % | 0.011 % | 0.064 % |
|                                          |         |         |         |         |
| u <sub>rep</sub>                         | 0.081 % | 0.037 % | 0.032 % | 0.026 % |
|                                          |         |         |         |         |
| $u_{\mathrm{t}}$                         | 0.500 % | 0.500 % | 0.501 % | 0.504 % |
|                                          |         |         |         |         |
| Expanded relative uncertainty $(U, k=2)$ | 1.871 % | 1.470 % | 1.607 % | 1.473 % |
|                                          |         |         |         |         |



**Figure S1.** Effect of the gas flow rate on the recovery.  $[HNO_3] = 0.1 \text{ mol } L^{-1}$ ;  $r(m_{Organic})_{phase}/m_{Aqueous phase}^{} = 0.5$ ;  $Q_1 = 0.5 \text{ mL min}^{-1}$ ; Extraction time: 60 s; Nebulizer tip to organic phase gap = 1.5 cm. Black line: Ca; Dotted black line: K; Dotted grey line: Mg; and, Grey line: Na.



**Figure S2.** Effect of the liquid flow rate (Q<sub>1</sub>) and extraction time on the recovery. [HNO<sub>3</sub>] = 0.1 mol L<sup>-1</sup>;  $r(m_{Organic phase}/m_{Aqueous phase}) = 0.5$ ; Q<sub>g</sub> = 0.4 L min<sup>-1</sup>; Nebulizer tip to organic phase gap = 1.5 cm. Black lines: Ca; Dotted black lines: K; Dotted grey lines: Mg; and, Grey lines: Na.



**Figure S3.** Effect of nitric acid concentration on the recovery.  $r(m_{Organic phase}/m_{Aqueous})$  $_{phase}) = 0.5$ ;  $Q_l = 0.5 \text{ mL min}^{-1}$ ;  $Q_g = 0.4 \text{ L min}^{-1}$ ; Extraction time: 60 s; Nebulizer to sample surface gap = 1.5 cm. Black lines: Ca; Dotted black lines: K; Dotted grey lines: Mg; and, Grey lines: Na.



**Figure S4.** Effect of the aqueous to organic phase mass ratio (r) on the emission intensity. [HNO<sub>3</sub>] = 0.1 mol L<sup>-1</sup>;  $Q_1 = 0.5$  mL min<sup>-1</sup>;  $Q_g = 0.4$  L min<sup>-1</sup>; Extraction time:

60 s; Nebulizer tip to organic sample surface gap = 1.5 cm. Black lines: Ca (secondary axis); Dotted black lines: K; Dotted grey lines: Mg; and, Grey lines: Na.