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Objective

Complex experimental designs often yield multiple
measurements of interest on each subject. For ex-
ample, a

�
	 �
factorial design will yield � � 

contrasts for each of � subjects. When analyz-
ing all � 	 � measurements together at the sec-
ond level, the problem of inter-task dependence or
“non-sphericity” must be accounted for. SPM ([1])
treats the inter-task correlations as nuisance param-
eters, estimating an � 	 � inter-task covariance and
adjusting the inferences accordingly ([2]).

However, correlations among tasks are of great
theoretical interest in psychological studies, because
they provide information about how tasks are related
to one another. Hence the goal of this work is to ana-
lyze inter-task correlations as parameters of interest,
not simply as nuisance parameters. Specifically, we
wish to detect pairs of effects where a high response
in one effect predicts a high (or low) response in the
other effect. This kind of information in human per-
formance is the basis of arguments for general fac-
tors underlying mental abilities (e.g., Spearman’s G)
but has seldom been applied to brain imaging data.

Working with a two-level model for fMRI data,
we estimate the � 	 � matrix of correlations between
� at each voxel and create statistic maps that detect
the presence of non-zero correlation across differ-
ent tasks. Then using scatterplots and the individual
correlations, we assess and interpret specific patterns
of dependence. We demonstrate our method with a
fMRI study of attention switching.

Methods

We work with the following two-level model for
fMRI data for � subjects:��� ��� �������������
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In (1),
� �

is of length ; , the number of scans. The
first level models the fMRI data for the

*
-the individ-

ual and the second level models the population mean�
(a length-< vector) while allowing for a nondiago-

nal covariance
3

. We wish to test if the covariance
matrix of a set of contrasts of the vectors of activation
coefficients is diagonal. We assume that the within-
subject variability

% �
is known, which is reasonable

since ; is generally large and consequently an accu-
rate estimate of

%
can be obtained.

Allowing some possible loss of information,
we work with the following modified formulation
of this problem. To begin with, we assume that
� � � � for all

*
. Denote by = , the � 	 < ma-

trix whose rows give the � contrast vectors. We
pre-multiply both sides of the first equation of (1)

above by > ?9@BA� =C!D� T �E(GF � � T and both sides of

the second equation by = and obtain a transformed
two-level model. The observations in the first-level
are given by H � ?9@BA� > � � and the regression pa-
rameters corresponding the two levels are given byI � ?9@BA� = � � � I ?9@BA� = �J- The vectors H � � I � � I are all
� 	 , . The covariance matrix in the second-level is
given by KL� = 3 = T -
It is possible now to formulate our question in terms
of K . We want to test the following:

H M+NOK is diagonal against H � NOK is non-diagonal.
! � (

In this initial work, we will assume that we have an
orthogonal design. That is, we assume that the <
contrast estimators are independent, specifically thatP ?Q@�A� =C!D� T �E(RF � = T is diagonal. With this assump-
tion, any correlation observed in H � at the second-
level is attributable to population-level inter-task cor-
relation. In this case we can use Bartlett’s modifica-
tion ([3]) of the relevant Likelihood Ratio Test (LRT)
([4], pp. 137-138) as an ad-hoc solution. However,
when the design is not orthogonal, correlation ob-
served in H � could be attributable to within-subject
design-induced dependence, simply detecting a non-
diagonal

P
(see Future Work for more on this case).

The data consist of �S�  contrasts on each of
� � T1U subjects. They are computed from fMRI
data with ; � ,VWX# observations, and where � is
; 	 < with <L� ZY - The experiment used a

�[	\�
facto-

rial design, with “Switch Type” (attribute or object)
and “Representation” (external or internal) factors.

We estimate each I � by the corresponding H � ,
and treat these � estimates as independent and iden-
tically distributed observations from N ]V! I � K^( . Our
ad-hoc solution is given by the generalized likeli-
hood ratio test (LRT) for correlation. It is straight-
forward, and is proportional to the logarithm of de-
terminant of the sample correlation matrix based on
H � ’s. Using an asymptotic _ � approximation with
�`!2�ba ,:(Gc � � d degrees of freedom, along with
Bartlett’s correction, we find P-values and thresholds
that control the false discovery rate. Significant vox-
els are interrogated with scatterplots and post-hoc
tests (testing for non-zero correlation at each element
of K ).

Results

A 5% FDR threshold ( e f # - #1#�ZU , _ �g�h ,:Y - d � )
found 2389 voxels with significant correlation. See
Figures 1-4 for the various patterns of correlation
were detected. Not shown are various voxels where
outliers appeared to induce spurious correlation.

Discussion & Future Work

While inter-task correlation is often ignored, re-
garded simply as a source of “nuisance nonspheric-
ity”, we assert that it is a potentially rich source of in-
formation about individual differences. We find that
the ad-hoc LRT-based correlation test presented can

detect interesting correlations, though it is also sen-
sitive to outliers.

In future work we would like to address the fol-
lowing: 1. Deriving tractable expression for the LRT
for general models ( � i� � �

, jlknmo! � � (pi� % �q&
) cor-

responding asymptotic distribution, 2. Robustness,
creating a test that is less sensitive to outliers; 3.
Greater generality, allowing for non-orthogonal de-
signs, accounting for correlation induced by the first
level design matrix; and 4. Small sample perfor-
mance, using Bayesian methods to regularize esti-
mates with small groups.

Figures

The format of the figures is as follows: Left: Thresh-
olded images of Bartlett’s statistic showing the re-
gions of significant inter-task correlations. Middle:
Correlation matrix image showing the correlation
values in white, standard deviations in black, and P-
values for non-zero correlation in yellow. Bold font
numbers indicate 0.05 significance, Bonferroni cor-
rected for searching over the 6 correlations. Right:
Scatterplot matrix for the 4 tasks showing data for all
39 subjects, with 95% confidence ellipsoids.

Figure 1: Left inferior frontal gyrus voxel showing positive correlation between attribute and object types
of switching, for both external and internal conditions. The functional correlations here are consistent with
the idea that switch costs are interrelated, though the heterogeneity of the correlations suggests that this region
does not uniformly mediate switching across types.

Figure 2: While many regions show a correlation between different switch types, this medial orbitofrontal
region shows positive correlation between the two object switching conditions, internal and external, for the
same switching type (object). This pattern is consistent with the notion of a general object switching mecha-
nism implemented in part in this region.

Figure 3: Voxel in the superior parietal cortex showing negative correlation between switching types
when stimuli are present externally, and positive correlation between external presentation of object switch-
ing and internal representation of attribute switching. This suggests that different types of switching are
heterogeneous in more complex ways that might be inferred from analyzing performance alone.

Figure 4: Superficial superior temporal voxel exhibiting positive correlations between External Object
and Internal Attribute switching (+0.435) and negative correlations between External Attribute and Internal
Attribute swiching (-0.420). Note than none of the effects considered shows any mean effect (data are centered
near zero), thus this region would never be identified through any analysis based on a t- or F-statistic.
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