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The integral representation of the Dirac delta is the most usual way of representing this function in the mathematics and physics 
literature. Many physical disciplines, including quantum mechanics, quantum field theory, signal theory, optics or astronomy, 
have been successfully formulated with it. Given that it is an improper function, the larger framework of distribution theory was 
developed to put it on a par with other more well-behaved representations, such as the unit impulse function or the Lorentzian 
and Gaussian representations, and to enable rigorous use of it. The framework is mathematically impeccable, but imposes 
restrictive conditions on the convolving test function. We review these requirements and propose an alternative integral 
representation that is well-behaved, and satisfies the sifting property for any continuous convolving function by reinterpreting 
the Dirac delta as the limit of a sequence of functions and by repositioning limits under integral signs to exploit the fact that they 
vanish everywhere but in an arbitrarily small vicinity of the origin. The same procedure is used to prove the sampling property 
for the other three representations mentioned above. 

 

In physical theories, the one-dimensional integral representation of the Dirac 
delta distribution is usually written as 
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It is a well-known fact that this representation is not properly defined along the 
real axis, and we are usually discouraged from attempting to evaluate it as a plain 
vanilla real-valued function. In fact, if we attempt to compute its value at x = 1, 
for example, we arrive at the puzzling result 




NN
N

;sinlim
1

)1(


               (2) 

Because the limit in (2) does not exist. Indeed, )(x only adopts some well-

defined, while divergent values, as .0x This ambiguity is circumvented by 

distribution theory, where the Dirac delta is usually written as follows: 
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Within this framework, f(x) represents a so-called test function. Contingent upon 
whether or not a distribution is considered to be tempered, the requirements 
imposed on test functions are more or less stringent. As regards other 
representations of the Dirac delta distribution, such as the impulse function or 
the Lorentzian and Gaussian representations, the treatment is analogous: 
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The Dirac delta distribution has the following relevant property: 
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Of course, equation (7) trivially implies 
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Equations (7) and (8) can be combined to write the well-known sifting property: 
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Within the framework of distribution theory, equation (7) is fulfilled in the 
assumption that f(x) is continuously differentiable and the function and its 
derivatives fall off faster than any power for large x. It can instead be assumed 
that f(x) decreases “sufficiently rapid”, is compactly supported, infinitely 
differentiable, or some other similar and invariably strong requirement. These 
requirements are due to the intrinsic definition of limits outside integral signs. 
As a matter of fact, each of the above representations necessarily has a different 
convergence requirement. In the case of the impulse function, provided that f(x) 
is continuous around the origin, equation (7) is immediately satisfied because 
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And since f(x) is continuous in an arbitrarily small vicinity of the origin, the mean 

value theorem can be invoked to prove that, for some    ,c , the last 

integral in (10) equals ,)(cf and    ,,)0()( cfcf  as .0

Hence 
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In the Lorentzian case, however, f(x) must not grow faster than x2 as x . 
Taking, for instance, f(x) = x4, we readily find  

    



 










 




 





1

1
22

4

022

4

0
limlim dx

x

x
dx

x

x
  

20

1

1

1
33

0 3

2
lim

3
lim















  











































x
tgx

x
         (12)

  

And the limit in (12) diverges. In the Gaussian case, the convergence requirement 
for f(x) as x   is less stringent, but it still depends on the decrease rate of the 

Gaussian function. If ,)(
4xexf  for example, equation (7) is not fulfilled in the 

Gaussian case, because the limit rapidly diverges, owing to the fact that limits 
are positioned outside integral signs.  

When dealing with the integral representation of the Dirac delta, the situation 
becomes most restrictive. In fact, it is the pathological behavior of (1) that 
requires imposing the most stringent conditions on the test functions so that 
equation (7) can be satisfied for any given representation of the Dirac delta 
distribution. The treatment is mathematically sound, but involves taking too 
much care with our choice of test functions. And there are still further 
disadvantages: in quantum field theory and theoretical physics, where a 
restrictive mathematical framework is undesirable, we are often confronted with 
expressions like 
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And we find it convenient to express (13) as 
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Then, assuming that sufficient convergence conditions are fulfilled by ),(pf we 

can obviously write 
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However, the right-hand side of (14) should be written as follows within the 
framework of distribution theory: 
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After comparing (13) with (16), we note that the limit has jumped outside the 
integral sign, and the process of interchanging limits and integral signs requires 
invoking the dominated convergence theorem, which imposes additional 
restrictions on functionals. 

From a physical point of view, it would be very advantageous to be able to prove 
equation (7) by merely assuming that f is continuous around the origin (most 
physically relevant fields may more easily meet this weak requirement), without 
having to impose additional conditions on the convolving field or function or 
invoke the dominated convergence theorem. This can be done with three of the 
four aforementioned representations, by reinterpreting the Dirac delta as the 
limit of a sequence of functions, which is tantamount to repositioning limits 
under the integral sign as follows: 
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In the case of (18), for example, if we calculate the value of )(x at x  and

x , we find 
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Meanwhile, for  aaax ,0,  (where 0a  implies ),0a  we clearly 

obtain 
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And for 2/10,,   x (note that the case  = 0 is implied by (22)) 

we find 
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Likewise, in the Gaussian case, we can calculate values such as 
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While for 10,,   Nx , we readily find 
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And for  aaax ,0, , the limit is undoubtedly null: 
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Thanks to these results, equation (7) can be easily proven for (18) and (19). 
Starting with the Lorentzian representation and taking into account that, 

according to (22) and (23), it takes null values at ),[],(    , we can 

perform the yx   change of variable and recall that ,)0()(lim
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origin) to prove 
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In the case of (19), the proof is analogous. Assuming that f(x) is continuous 
around the origin and given that, according to (26) and (27), the Gaussian 

representation vanishes at ),[],(    NN , we can perform the 

yxN   change of variable and take advantage of the fact that 
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As regards the impulse function in (17), taking into account that
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If we attempt to perform the same calculation with the integral representation 
of the Dirac delta function, we are impeded by the fact that (1) does not vanish 
outside an arbitrarily small vicinity of the origin: 
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Although the integral of yy sin  over ),(   equals one, the assumption 

that f(x) is continuous around the origin does not imply that 
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 ),( y  and (7) cannot be proved. If we evaluate 

this limit at y = N, for example, we obtain )1(f  instead of ).0(f  

Note that the Fourier inversion theorem cannot be invoked to prove (1) for the 
integral representation, because f(k) = 1 is not in ℒଵ(ℝ), even though sin kx and 
cos kx are suitable test functions and therefore: 
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Similarly, the well-known trick of inserting a convergence factor into (1) for 
proving that the integral and Lorentzian representations are equivalent is 
arguable. Although this equivalence can be apparently proven as follows: 
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In doing so, we are overlooking the presence of infinite integration limits. Since 
improper integrals are typically defined by Cauchy principal values, in this case 
we should write 
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If we insert a convergence factor into equation (34) and perform the integration 

in k, we are confronted with the limit of Rixe )(  as R    and   0+, which 

is ill-defined.  

However, we can find an alternative integral representation of the Dirac delta 
that fulfills equation (7) for any continuous function and may alternatively be 
used in physical theories. Our choice is: 
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In fact, we can use (35) to prove (7) following the same procedure as in previous 
cases. First of all, let us note that 
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By virtue of (38) and (39), this representation of the Dirac delta vanishes at

),,[],(    NN 210,   . Considering this before 

performing the yxN 2  change of variable, while recalling that
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function f(x) that is continuous around the origin, we can easily prove (7): 
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In this calculation, we have reintroduced the yxN 2  change of variable after 

extracting )0(f  from the integral to take advantage of the fact that (35) 

vanishes at ),,[],(    NN 210,    and that we can 

thus extend the integration limits to ),(  before inserting the same change 

of variable once more to express (35) as a parameter independent integral, 
whose result is well-known.  

Note that the same method has been used to prove (7) for all four 
representations. In fact, it can be applied to prove equation (7) for other 
sequences of functions that are null everywhere except in an arbitrarily small 
vicinity of the origin, where they take positive, divergent values. 

Provided that f(x) is continuous in an arbitrarily small region of x = y, for any x, 
y, equation (7) can be easily generalized to the more general sampling 
property: 
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Denoting 321 LLLV  , where the 1, 2, 3 subscripts stand for the Cartesian 

coordinates x, y, z, and 0LT  , the three and four-dimensional representations 

of (35) in momentum space can be expressed as 
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And 
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Where 321 ,, LLL are assumed to tend separately to infinity. Furthermore, we 

can use the following notation: 
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We can also write: 
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