Supporting Information for:

Asymmetric Fe ${ }^{\text {II }}$-Catalyzed Thia-Michael Addition Reaction to α, β-Unsaturated Oxazolidin-2-one Derivatives

Samuel Lauzon, ${ }^{a}$ Hoda Keipour, ${ }^{a}$ Vincent Gandon, ${ }^{*}$ b,c and Thierry Ollevier ${ }^{*}{ }^{\text {a }}$

${ }^{\text {a }}$ Département de chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
${ }^{\mathrm{b}}$ Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Univ. ParisSud, Université Paris-Saclay, 91405 Orsay cedex, France
${ }^{\text {c }}$ Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
E-mails: thierry.ollevier@chm.ulaval.ca; vincent.gandon@u-psud.fr

Content

General Information..S-2
General Procedure for the Preparation of α, β-Unsaturated Oxazolidin-2-ones 1a, 1e.......S-3
General Procedure for the Preparation of α, β-Unsaturated Oxazolidin-2-ones 1b, 1d S-4
Procedure for the Preparation of (E)-Ethyl 4-oxo-4-(2-oxooxazolidin-3-yl)but-2-enoate (1c)
S-5
Procedure for the Preparation of (E)-1-But-2-enoylpyrrolidin-2-one (1f)S-6
Procedure for the Preparation of (E)-3-Phenyl-1-(pyridin-2-yl)prop-2-en-1-one (1g)....... S-6
Procedure for the Preparation of 2-Acetylpyridine 1-oxide (5):.. S-7
Procedure for the Preparation of (E)-2-Cinnamoylpyridine 1-oxide (1i): S-8
Procedure for the Preparation of (E)-1-(Pyrrolidin-1-yl)but-2-en-1-one ($\mathbf{1} \mathbf{j})$..................... S-8
General Procedure for the Asymmetric Thia-Michael Addition Reaction to 1a................ S-9
General Procedure for the Michael Addition Reaction of 2a to α, β-Unsaturated Carbonyl
Compounds .. S-16
Computational Study .. S-20
References... S-27
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR Spectra ... S-29
HPLC Chromatograms.. S-52

General Information

All reactions were performed in flame-dried glass and tubes under an atmosphere of argon. All solvents $\left(\mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{PhMe}\right)$ were commercially available and they were distilled prior to use from the indicated drying agents. $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was purchased from Alfa Aesar ${ }^{\circledR}$ (reagent grade purity). Bolm's ligand was prepared according to reported procedures. ${ }^{1}$ All thiols were purchased directly from commercial suppliers (Alfa Aesar ${ }^{\circledR}$, VWR $^{\circledR}$ and Sigma-Aldrich ${ }^{\circledR}$) and they were used without further purifications. Michael acceptors $\mathbf{1 h}$ and $\mathbf{1 k}$ were purchased from Sigma-Aldrich ${ }^{\circledR}$ and they were used without further purifications. Powdered $4 \AA$ MS was preactivated for 15 hours at $150{ }^{\circ} \mathrm{C}$ under vacuum prior to use. Thin-layer chromatography (TLC) was carried out on commercial silica gel plates ($250 \mu \mathrm{~m}$; Silicycle F254) and compounds were visualized using UV light absorbance (254 nm) and/or aqueous KMnO_{4}. Flash column chromatography was performed on silica gel (Silicycle, 230-400 mesh) or Biotage ${ }^{\circledR}$ Isolera ${ }^{\text {TM }}$ One automated chromatography system using a normal phase cartridge (Biotage ${ }^{\circledR}$ SNAP Ultra 25 g packed with Biotage ${ }^{\circledR} \mathrm{HP}$-Sphere $\left.{ }^{\mathrm{TM}} 25 \mu \mathrm{~m}\right) .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\{\mathrm{H}\}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian Inova 400 MHz and Agilent Technologies DD2 500 MHz spectrometers in CDCl_{3}. For ${ }^{1} \mathrm{H}$ NMR, chemical shifts were reported in ppm downfield from tetramethylsilane (TMS) served as internal standard ($\delta=0 \mathrm{ppm}$). Coupling constant are measured in hertz (Hz). For ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR, CDCl_{3} was used as internal standard ($\delta=77.23 \mathrm{ppm}$) and spectra were obtained with complete proton decoupling. For ${ }^{19} \mathrm{~F}$ NMR, CFCl_{3} was used as the external standard. High-resolution mass spectra (HRMS) were recorded on an LC/MS-TOF (time of flight) Agilent 6210 mass spectrometer using electrospray ionization (ESI). IR spectra were recorded on a Thermo Scientific Nicolet 380 FT-IR spectrometer with ZnSe ATR accessory and they were reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Melting point (mp) are uncorrected and they were recorded on a MEL-TEMP ${ }^{\circledR}$ capillary melting point apparatus. Enantiomeric ratios were determined on an Agilent 1100 Series HPLC system (hexane $/ i \mathrm{PrOH}$ solvent mixture) using Daicel ChiralCel ${ }^{\circledR}$ OD-H and OJ-H, and Daicel ChiralPak ${ }^{\circledR}$ AD-H and ASH columns. Optical rotations were measured on a Jasco DIP-360 digital polarimeter using a sodium lamp at ambient temperature.

General Procedure for the Preparation of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Oxazolidin-2-ones 1a, 1e

To an appropriate vacuum flame-dried flask under argon, the oxazolidin-2-one (5.0 g , $57.0 \mathrm{mmol}, 1.0$ equiv) was added to THF (111 mL). The flask was cooled to $-78^{\circ} \mathrm{C}$ before n-butyllithium ($22.80 \mathrm{~mL}, 57.0 \mathrm{mmol}, 1.0$ equiv, 2.5 M in hexane) was added dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 hours. Then, the α, β-unsaturated acyl chloride (62.2 mmol, 1.1 equiv) was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 hours. The reaction was allowed to warm to room temperature and it was stirred overnight. Upon complete consumption of starting materials, the reaction mixture was quenched with an aqueous solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with aqueous saturated $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, brine (50 mL), and dried over MgSO_{4}. The drying agent was removed by filtration, and the filtrate was concentrated in vacuo (bath temperature $38^{\circ} \mathrm{C}$). The crude product was purified by silica gel chromatography to afford the corresponding α, β-unsaturated oxazolidin-2-ones.

(E)-3-(But-2-enoyl)oxazolidin-2-one (1a): ${ }^{2}$

Product was obtained as a white solid ($8.13 \mathrm{~g}, 42.4 \mathrm{mmol}, 92 \%$ yield). $\mathrm{mp}=30-31{ }^{\circ} \mathrm{C}\left(\right.$ litt. $\left.\mathrm{mp}=30^{\circ} \mathrm{C}\right) .{ }^{2} R_{f}=0.22($ Hexane $/ \mathrm{EtOAc}=70: 30)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.27(\mathrm{dq}, J=15.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dq, $J=15.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.97$ (dd, $J=6.6$, $1.3 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 165.1,153.5,146.8,121.4,62.0$, 42.7, 18.5 ppm . IR (ZnSe): 2996, 2925, 1773, 1681, 1637, 1338, 1216, $970,705 \mathrm{~cm}^{-1}$.

3-Methacryloyloxazolidin-2-one (1e): ${ }^{3}$

Product was obtained as a white solid ($7.25 \mathrm{~g}, 46.7 \mathrm{mmol}, 82 \%$ yield $)$. $\mathrm{mp}=51-53{ }^{\circ} \mathrm{C}\left(\right.$ litt. $\left.\mathrm{mp}=56-57{ }^{\circ} \mathrm{C}\right) .{ }^{3} R_{f}=0.20$ (Hexane/EtOAc $=$ $70: 30) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 5.47(\mathrm{qd}, J=1.6,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.44(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{dd}, J=1.6,1.0 \mathrm{~Hz}, 3 \mathrm{H})$
ppm. ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 171.0,152.8,139.1,120.9,62.3,43.0,19.1 \mathrm{ppm}$. IR (ZnSe): 2959, 2923, 1770, 1681, 1379, 1317, 1187, 1006, $762 \mathrm{~cm}^{-1}$.

General Procedure for the Preparation of α, β-Unsaturated Oxazolidin-2-ones 1b, 1d

To vacuum flame-dried 50 mL flask under argon, the oxazolidin-2-one $(0.98 \mathrm{~g}, 11.3 \mathrm{mmol}$, 1.0 equiv), DMAP ($179 \mathrm{mg}, 1.50 \mathrm{mmol}, 0.13$ equiv) and the α, β-unsaturated acid (14.7 mmol , 1.3 equiv) was added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The flask was cooled to $0{ }^{\circ} \mathrm{C}$ before DCC (3.03 g , $14.7 \mathrm{mmol}, 1.3$ equiv) was added in one portion. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes. The reaction was allowed to warm to room temperature, and it was stirred overnight. Upon the complete consumption of starting materials, the formed dicyclohexylurea was filtered, and the precipitate was washed with portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 30 mL). The filtrate was washed with aqueous saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, and dried over MgSO_{4}. The drying agent was removed by filtration, and the filtrate was concentrated in vacuo (bath temperature $30^{\circ} \mathrm{C}$). The crude product was purified by silica gel chromatography to afford the corresponding α, β-unsaturated oxazolidin- 2 -ones.

(E)-3-Cinnamoyloxazolidin-2-one (1b): ${ }^{4}$

Product was obtained as a white solid ($2.14 \mathrm{~g}, 9.83 \mathrm{mmol}, 87 \%$ yield). $\mathrm{mp}=144-145{ }^{\circ} \mathrm{C}\left(\right.$ litt. $\left.\mathrm{mp}=151.0-151.5{ }^{\circ} \mathrm{C}\right) .{ }^{5} \quad R_{f}=0.21$ (Hexane/EtOAc $=70: 30$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.93(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 4.48$ $(\mathrm{m}, 2 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 165.3,153.6,146.2,134.5$, 130.7, 128.9, 128.6, 116.6, 62.1, 42.8 ppm . IR (ZnSe): 3096, 2928, 1762, 1675, 1614, 1351, $1209,1036,752 \mathrm{~cm}^{-1}$.

(E)-3-(4,4,4-Trifluorobut-2-enoyl)oxazolidin-2-one (1d): ${ }^{4}$

Product was obtained as a yellow solid ($1.44 \mathrm{~g}, 6.89 \mathrm{mmol}, 61 \%$ yield). $\mathrm{mp}=78-80{ }^{\circ} \mathrm{C}$ (litt. $\mathrm{mp}=82-85{ }^{\circ} \mathrm{C}$). ${ }^{6} \quad R_{f}=0.23$ (Hexane/EtOAc $=70: 30) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.92(\mathrm{dq}$, $J=15.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dq}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 162.5,153.1,131.8(\mathrm{q}, J=$ $35.6 \mathrm{~Hz}), 127.2(\mathrm{q}, J=6.2 \mathrm{~Hz}), 122.1(\mathrm{q}, J=270.2 \mathrm{~Hz}), 62.4,42.5 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR (470 MHz , CDCl_{3}): $\delta_{\mathrm{F}}-65.34(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{~F}) \mathrm{ppm}$. IR (ZnSe): 3103, 2929, 1771, 1690, 1375, 1213, 1112, $984,752 \mathrm{~cm}^{-1}$.

Procedure for the Preparation of (E)-Ethyl 4-oxo-4-(2-oxooxazolidin-3-yl)but-2-enoate (1c): ${ }^{7}$

To a vacuum flame-dried 250 mL flask under argon, the mono-ethyl fumarate ($1.97 \mathrm{~g}, 13.7$ mmol, 1.2 equiv) was added to THF (100 mL). The mixture was cooled to $-10^{\circ} \mathrm{C}$ before the triethylamine ($4.00 \mathrm{~mL}, 28.7 \mathrm{mmol}, 2.5$ equiv) and the pivaloyl chloride $(1.70 \mathrm{~mL}$, $13.7 \mathrm{mmol}, 1.2$ equiv) were added subsequently. The white suspension was stirred at $-10^{\circ} \mathrm{C}$ for 1 hour. Then, the lithium chloride ($533 \mathrm{mg}, 12.6 \mathrm{mmol}, 1.1$ equiv), and the oxazolidin-2one ($1.00 \mathrm{~g}, 11.5 \mathrm{mmol}, 1.0$ equiv) were added to the mixture at $-10^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature, and it was stirred for 5 hours. An aqueous solution of $\mathrm{HCl}(20 \mathrm{~mL}, 1 \mathrm{M})$ was added by portions, and the slurry was stirred for 1 hour. The reaction was extracted with EtOAc ($9 \times 75 \mathrm{~mL}$). The organic layer was washed with aqueous saturated $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, brine ($1 \times 200 \mathrm{~mL}$), and dried over MgSO_{4}. The drying agent was removed by filtration, and the filtrate was concentrated in vacuo (bath temperature $38^{\circ} \mathrm{C}$). The crude product was purified by silica gel chromatography to give the compound $\mathbf{1 c}$ as a white solid ($1.42 \mathrm{~g}, 6.67 \mathrm{mmol}, 58 \%$ yield). $\mathrm{mp}=65-66{ }^{\circ} \mathrm{C}\left(\right.$ litt. $\left.\mathrm{mp}=62-63{ }^{\circ} \mathrm{C}\right) .{ }^{8} R_{f}=0.49$ (Hexane/EtOAc $=50: 50) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 8.16(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 164.8,163.8,153.1$,
134.3, 131.7, 62.4, 61.4, 42.6, 14.1 ppm . IR (ZnSe): 3096, 2990, 1768, 1716, 1677, 1367, $978,752,668 \mathrm{~cm}^{-1}$.

Procedure for the Preparation of (E)-1-But-2-enoylpyrrolidin-2-one (1f): ${ }^{\mathbf{9}}$

To a vacuum flame-dried 100 mL flask under argon, the pyrrolidin-2-one ($1,50 \mathrm{~g}, 17.6 \mathrm{mmol}$, 1.0 equiv) was added to THF (34 mL). The flask was cooled to $-78{ }^{\circ} \mathrm{C}$ before the n-butyllithium ($7.05 \mathrm{~mL}, 17.6 \mathrm{mmol}, 1.0$ equiv, 2.5 M in hexane) was added dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hour. Then, the (E)-crotonoyl chloride $(1.89 \mathrm{~mL}$, 19.4 mmol, 1.1 equiv) was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 hour. The reaction was allowed to warm to room temperature, and it was stirred for an additional 3 hours. The reaction mixture was quenched with an aqueous solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}(18 \mathrm{~mL})$, and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with aqueous saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, brine (30 mL), and dried over MgSO_{4}. The drying agent was removed by filtration, and the filtrate was concentrated in vacuo (bath temperature $38^{\circ} \mathrm{C}$). The crude product was purified by silica gel chromatography to give the compound $\mathbf{1 f}$ as a colorless oil $\left(1.92 \mathrm{~g}, 12.5 \mathrm{mmol}, 71 \%\right.$ yield). $R_{f}=0.29$ (Hexane/EtOAc $=$ $70: 30){ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.27(\mathrm{dq}, J=15.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dq}, J=15.3$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=7.2,2 \mathrm{H}), 2.62(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{dd}, J=6.8$, $1.6 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 175.5,166.1,145.7,123.5,45.7,33.9$, 18.5, 17.2 ppm. IR (ZnSe): 2970, 2912, 1729, 1673, 1634, 1330, 1215, 968, $670 \mathrm{~cm}^{-1}$.

Procedure for the Preparation of (E)-3-Phenyl-1-(pyridin-2-yl)prop-2-en-1-one (1g): ${ }^{10}$

1g
The copper iodide was added to a 10 mL flask equipped with a mechanical stirrer. Then, the 2-pyridinecarboxaldehyde ($1.43 \mathrm{~mL}, 15.0 \mathrm{mmol}, 1.0$ equiv), the piperidine (1.78 mL , $18.0 \mathrm{mmol}, 1.2$ equiv), and the phenylacetylene ($1.98 \mathrm{~mL}, 18.0 \mathrm{mmol}, 1.2$ equiv) were added
to the flask. The mixture was warmed to $70^{\circ} \mathrm{C}$, and was stirred with opened cap for 24 hours. The reaction was filtered through a plug of Celite ${ }^{\circledR}$, washed 3 times with EtOAc, and the filtrate was concentrated in vacuo (bath temperature $38^{\circ} \mathrm{C}$). The crude product was purified by silica gel chromatography to give the compound $\mathbf{1 g}$ as a brown-orange solid ($1.69 \mathrm{~g}, 8.10$ $\mathrm{mmol}, 54 \%$ yield $) . \mathrm{mp}=54-55{ }^{\circ} \mathrm{C}\left(\mathrm{litt} . \mathrm{mp}=65.4-67.5^{\circ} \mathrm{C}\right) .{ }^{10} R_{f}=0.59($ Hexane $/ \mathrm{EtOAc}=$ $70: 30$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 8.76$ (ddd, $J=4.8,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $8.32(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.21(\mathrm{dt}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.51$ (ddd, $J=7.5,4.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 189.4,154.2,148.8,144.7,137.0,135.1,130.6,128.9$, 128.8, 126.9, 122.9, 120.8 ppm . IR (ZnSe): 3058, 2929, 2797, 1668, 1602, 1447, 1333, 975, $750 \mathrm{~cm}^{-1}$.

Procedure for the Preparation of 2-Acetylpyridine 1-oxide (5): ${ }^{11}$

To a 100 mL flask equipped with a mechanical stirrer, the 2-acetylpyridine (0.56 mL , $5.0 \mathrm{mmol}, 1.0$ equiv) was added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before the 3-chloroperbenzoic acid ($50 \% \mathrm{w} / \mathrm{w} ; 5.17 \mathrm{~g}, 15.0 \mathrm{mmol}, 3.0$ equiv) was added portionwise. The reaction was stirred overnight at $0{ }^{\circ} \mathrm{C}$, and it was allowed to reach room temperature. The reaction was quenched with water (5 mL) and aqueous saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ subsequently. The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combine organic layer was washed with brine (20 mL), dried with MgSO_{4}, and the filtrate was concentrated in vacuo (bath temperature $30{ }^{\circ} \mathrm{C}$). The crude product was purified by silica gel chromatography to give the compound 5 as a yellow solid ($0.481 \mathrm{~g}, 3.51 \mathrm{mmol}, 70 \%$ yield). $\mathrm{mp}=32-33{ }^{\circ} \mathrm{C} . R_{f}=0.38\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=50: 50\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 8.21$ (ddd, $J=6.5,1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (ddd, $J=7.9,2.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (ddd, $J=7.9,6.5$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta_{\mathrm{C}} 194.9,146.8,140.6,128.0,126.8,125.4,30.6 \mathrm{ppm}$. IR (ZnSe): 3096, 3076, 3056, $1679,1433,1357,1159,849,778 \mathrm{~cm}^{-1}$.

Procedure for the Preparation of (E)-2-Cinnamoylpyridine 1-oxide (1i): ${ }^{12}$

To a 25 mL flask equipped with a mechanical stirrer, the 2-acetylpyridine 1-oxide (450 mg , 3.3 mmol , 1.0 equiv) was added to $\mathrm{MeOH}(10 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ before the potassium hydroxide ($184 \mathrm{mg}, 4.9 \mathrm{mmol}, 1.5$ equiv) was added portionwise. After stirring at $0{ }^{\circ} \mathrm{C}$ for 0.5 hour, the benzaldehyde ($0.50 \mathrm{~mL}, 3.3 \mathrm{mmol}, 1.0$ equiv) was added to the reaction. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 hours. The mixture was neutralized with HCl $1 \mathrm{M}(5 \mathrm{~mL})$, and methanol was evaporated in vacuo. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). The combine organic layer was washed with brine (20 mL), dried over MgSO_{4}, and the filtrate was concentrated in vacuo (bath temperature $30^{\circ} \mathrm{C}$). The crude product was purified by silica gel chromatography to give the compound $\mathbf{1 i}$ as a yellow solid (0.293 g , $1.30 \mathrm{mmol}, 39 \%$ yield). $\mathrm{mp}=99-102{ }^{\circ} \mathrm{C}\left(\right.$ litt. $\mathrm{mp}=104-107{ }^{\circ} \mathrm{C}$). ${ }^{12} R_{f}=0.48$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ Acetone $\left.=50: 50\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 8.25(\mathrm{ddd}, J=6.5,1.2,0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.83(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, J=7.9,2.2,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 186.3$, $147.2,144.2,140.4,134.6,130.8,128.8,128.8,127.7,127.2,125.6,124.3 \mathrm{ppm} . \operatorname{IR}(\mathrm{ZnSe}):$ $3111,3022,1668,1610,1423,1194,968,845,759 \mathrm{~cm}^{-1}$.

Procedure for the Preparation of (E)-1-(Pyrrolidin-1-yl)but-2-en-1-one (1j): ${ }^{13}$

To a vacuum flame-dried 25 mL flask equipped with a mechanical stirrer, the pyrrolidine ($1.04 \mathrm{~mL}, 12.5 \mathrm{mmol}, 1.0$ equiv) was added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$ before the pyridine ($1.01 \mathrm{~mL}, 12.5 \mathrm{mmol}, 1.0$ equiv) was added portionwise. After stirring at $0^{\circ} \mathrm{C}$ for 0.5 hour, the (E)-crotonoyl chloride ($1.34 \mathrm{~mL}, 13.8 \mathrm{mmol}, 1.1$ equiv) was added to the reaction. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.25 hour. The reaction was allowed to warm to room temperature, and it was stirred for an additional 3 hours. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the resulting mixture was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}), \mathrm{HCl}$
$5 \%(10 \mathrm{~mL}), \mathrm{NaOH} 5 \%(10 \mathrm{~mL})$, and brine (10 mL). The organic layer was dried over MgSO_{4}, and the filtrate was concentrated in vacuo (bath temperature $30{ }^{\circ} \mathrm{C}$). The crude product was purified by silica gel chromatography to give the compound $\mathbf{1 j}$ as colorless crystals ($1.23 \mathrm{~g}, 8.87 \mathrm{mmol}, 71 \%$ yield). $\mathrm{mp}=29^{\circ} \mathrm{C} . R_{f}=0.10$ (Hexane $/ \mathrm{EtOAc}=40: 60$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 6.92(\mathrm{dq}, J=15.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dq}, J=15.0,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.54-3.50(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{dd}, J=6.9,1.8 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $(100 \mathrm{MHz}, \mathrm{CDCl} 3): \delta_{\mathrm{C}} 164.7,140.4,123.1,46.4,45.6,26.0,24.2,17.9$ ppm. IR (ZnSe): 2967, 2870, 1664, 1607, 1414, 1226, 962, 824, $675 \mathrm{~cm}^{-1}$.

General Procedure for the Asymmetric Thia-Michael Addition Reaction to (E)-3-Crotonoyloxazolidin-2-one Catalyzed by $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathbf{6 H} \mathbf{2} \mathbf{O} /(S, S)$-Bolm's Ligand complex:

Under argon atmosphere, a mixture of 1,1'-(2,2'-bipyridine-6,6'-diyl)bis(2,2-dimethylpropan-1-ol) ((S,S)-Bolm's ligand, $9.9 \mathrm{mg}, 0.030 \mathrm{mmol}, 0.06$ equiv), $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(9.1 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv), and activated $4 \AA$ molecular sieves $(50 \mathrm{mg})$ in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ were stirred at $25^{\circ} \mathrm{C}$ for 2 hours (pre-complexation) during in which time the $\mathrm{Fe}^{\mathrm{II}}$ salt was completely dissolved to give a yellow solution. (E)-3-Crotonoyloxazolidin-2-one $\mathbf{1 a}(77.6 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1 equiv) was introduced, and thiol 2a-0 ($2.5 \mathrm{mmol}, 5$ equiv) was added subsequently. The mixture was stirred at $25^{\circ} \mathrm{C}$, and monitored by TLC. After completion of the reaction, the mixture was filtered through a plug of Celite ${ }^{\circledR}$, washed 3 times with $\mathrm{Et}_{2} \mathrm{O}$, and the filtrate was concentrated in vacuo (bath temperature $35^{\circ} \mathrm{C}$). The crude residue was purified by a normal phase chromatography (Biotage ${ }^{\circledR}$ SNAP Ultra $25 \mathrm{~g} /$ Biotage ${ }^{\circledR} \mathrm{HP}$-Sphere ${ }^{\text {TM }} 25 \mu \mathrm{~m}$) using a gradient elution of hexane $/$ EtOAc $=$ 90:10-60:40 to give thioethers 3a-0. Bolm's ligand \mathbf{L}^{*} was recovered quantitatively in the purification process by eluting with hexane/EtOAc $=80: 20\left(R_{f}=0.27\right)$.

(+)-(R)-3-(3-(Benzylthio)butanoyl)oxazolidin-2-one (3a): ${ }^{14}$

Product was obtained as a colorless oil $(131 \mathrm{mg}, 0.469 \mathrm{mmol}$, 94\% yield). Reaction time: 24 h. 96:4 er determined by HPLC (Daicel ChiralCel ${ }^{\circledR}$ OD-H, hexane $/ i \operatorname{PrOH}=70: 30$, flow rate $=$ $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}(R)=23.3 \mathrm{~min}, t_{\mathrm{R}}(S)=27.0 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=+13.0\left(c=0.25, \mathrm{CHCl}_{3}\right)$ $\left(\right.$ litt. ${ }^{14}[\alpha]_{\mathrm{D}}{ }^{25}=-15.0\left(c=0.5, \mathrm{CHCl}_{3}\right), 94 \%$ ee of $(S)-3 \mathbf{a} ;$ litt. ${ }^{15}[\alpha]_{\mathrm{D}}{ }^{25}=-15.7(c=1.0$, CHCl_{3}), 97% ee of (S)-3a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{tt}$, $J=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.77 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 171.0,153.4,138.4,128.8,128.5,126.9,62.0,42.5$, 42.4, 35.6, 35.3, 21.6 ppm. IR (ZnSe): 2963, 2921, 1770, 1693, 1383, 1219, 1028, 757, 702 cm^{-1}.

(+)-3-(3-(4-Tert-butylbenzylthio)butanoyl)oxazolidin-2-one (3b):

Product was obtained as a colorless oil $(126 \mathrm{mg}, 0.375 \mathrm{mmol}$, 75\% yield). Reaction time: $15 \mathrm{~h} .95: 5 \mathrm{er}$ determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ \mathrm{PrOH}=90: 10$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=27.0 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=29.3 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=+10.3$ $\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.32(\mathrm{dt}, J=8.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{dt}$, $J=8.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.41-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.75 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.30$ (s, 9H) ppm. ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR (100 MHz, CDCl_{3}): $\delta_{\mathrm{C}} 171.0,153.4,149.8,135.2,128.5,125.4$, 62.1, 42.5, 42.4, 35.6, 34.8, 34.5, 31.4, 21.6 ppm. IR (ZnSe): 2960, 2866, 1772, 1694, 1383, 1188, 1098, 1028, $703 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 336.1628$, found 336.1637.

(+)-3-(3-(4-Methylbenzylthio)butanoyl)oxazolidin-2-one (3c):

Product was obtained as a white solid $(137 \mathrm{mg}, 0.467 \mathrm{mmol}$, 93\% yield). $\mathrm{mp}=44-45^{\circ} \mathrm{C}$. Reaction time: $21 \mathrm{~h} .95: 5 \mathrm{er}$ determined by HPLC (Daicel ChiralCel ${ }^{\circledR}$ OD-H, hexane $/ \mathrm{iPrOH}=70: 30$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}$ (major) $=24.5 \mathrm{~min}, t_{\mathrm{R}}$ (minor)
$=29.6 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=+8.5\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.21(\mathrm{dt}, J=8.0$, $1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{dt}, J=8.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $1.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 171.0,153.4,136.5$, 135.2, 129.1, 128.7, 62.0, 42.5, 42.4, 35.5, 35.0, 21.6, 21.1 ppm. IR (ZnSe): 2958, 2919, 1756, 1698, 1369, 1222, 1033, $759,711 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 294.1158, found 294.1162.

(+)-(R)-3-(3-(4-Methoxybenzylthio)butanoyl)oxazolidin-2-one (3d): ${ }^{14}$

Product was obtained as a white solid ($144 \mathrm{mg}, 0.465 \mathrm{mmol}$, 93% yield). $\mathrm{mp}=78-80^{\circ} \mathrm{C}$. Reaction time: 24 h. 96:4 er determined by HPLC (Daicel ChiralCel ${ }^{\circledR}$ OD-H, hexane $/ i \mathrm{PrOH}$ $=70: 30$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}(R)=32.9 \mathrm{~min}, t_{\mathrm{R}}(S)=38.5 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+8.4\left(c=0.5, \mathrm{CHCl}_{3}\right)\left(\mathrm{litt} .{ }^{14}[\alpha]_{\mathrm{D}}{ }^{25}=-16.6\left(c=0.5, \mathrm{CHCl}_{3}\right), 96 \%\right.$ ee of $(S)-\mathbf{3 d} ; \mathrm{litt}^{15}[\alpha]_{\mathrm{D}}{ }^{25}$ $=-14.7\left(c=1.0, \mathrm{CHCl}_{3}\right), 97 \%$ ee of $\left.(S)-\mathbf{3 d}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.25(\mathrm{dt}$, $J=8.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dt}, J=8.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 2 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.06$ $(\mathrm{m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 171.0,158.5$, $153.4,130.3,129.9,113.8,62.0,55.3,42.5,42.4,35.4,34.6,21.6 \mathrm{ppm}$. IR (ZnSe): 2976, 2924, 1783, 1690, 1364, 1188, 1025, 753, $653 \mathrm{~cm}^{-1}$.

(+)-(R)-3-(3-(4-Chlorobenzylthio)butanoyl)oxazolidin-2-one (3e): ${ }^{14}$

Product was obtained as a white solid ($144 \mathrm{mg}, 0.459 \mathrm{mmol}$, 92% yield). $\mathrm{mp}=42-43{ }^{\circ} \mathrm{C}$. Reaction time: $63 \mathrm{~h} .94: 6 \mathrm{er}$ determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ i \mathrm{PrOH}=70: 30$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}(R)=22.1 \mathrm{~min}, t_{\mathrm{R}}(S)=23.8$ $\min .[\alpha]_{\mathrm{D}}{ }^{25}=+6.0\left(c=0.5, \mathrm{CHCl}_{3}\right)\left(\right.$ litt. ${ }^{14}[\alpha]_{\mathrm{D}}{ }^{25}=-13.2\left(c=0.5, \mathrm{CHCl}_{3}\right), 97 \%$ ee of $(S) \mathbf{- 3 e}$; litt. ${ }^{15}[\alpha]_{\mathrm{D}}{ }^{25}=-16.5\left(c=1.0, \mathrm{CHCl}_{3}\right), 93 \%$ ee of $\left.(S)-3 \mathrm{e}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}$ $7.29-7.24(\mathrm{~m}, 4 \mathrm{H}), 4.41-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (dd, $J=16.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 3.03$ (dd, $J=16.2$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 170.8,153.4$,
137.0, 132.6, 130.2, 128.6, 62.1, 42.5, 42.4, 35.6, 34.6, 21.6 ppm. IR (ZnSe): 2971, 2917, $1767,1696,1384,1221,1012,758,706 \mathrm{~cm}^{-1}$.

(+)-3-(3-(2-Chlorobenzylthio)butanoyl)oxazolidin-2-one (3f):

Product was obtained as a white solid (118 mg, 0.376 mmol , 75% yield). $\mathrm{mp}=36-37{ }^{\circ} \mathrm{C}$. Reaction time: $15 \mathrm{~h} .94: 6 \mathrm{er}$ determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ \mathrm{iPrOH}=70: 30$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}$ (minor) $=16.3 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=17.4 \mathrm{~min} \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+12.2\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.38(\mathrm{dd}, J=$ $7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{td}, J=$ $7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.24$ $(\mathrm{m}, 2 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}$ $170.9,153.4,136.2,133.9,130.8,129.7,128.4,126.9,62.1,42.5,42.5,36.0,32.7,21.7 \mathrm{ppm}$. IR (ZnSe): 3015, 2969, 2918, 1763, 1692, 1381, 1202, 1041, $759 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClNO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 314.0612$, found 314.0618 .

$(+)-(R)$-3-(3-(Phenylthio)butanoyl)oxazolidin-2-one (3g): ${ }^{15}$

Product was obtained as a white solid ($119 \mathrm{mg}, 0.449 \mathrm{mmol}$, 90% yield). $\mathrm{mp}=40-41^{\circ} \mathrm{C}$. Reaction time: $20 \mathrm{~h} .81: 19 \mathrm{er}$ determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ i \mathrm{PrOH}=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}(S)=13.9 \mathrm{~min}, t_{\mathrm{R}}(R)=15.6$ $\min .[\alpha]_{\mathrm{D}}{ }^{25}=+28.6\left(c=1.0, \mathrm{CHCl}_{3}\right)\left(\right.$ litt. ${ }^{15}[\alpha]_{\mathrm{D}}{ }^{25}=-11.5\left(c=1.0, \mathrm{CHCl}_{3}\right), 86 \%$ ee of $(S)-\mathbf{3 d}$; litt. ${ }^{16}[\alpha]_{\mathrm{D}}{ }^{24}=-12.70\left(c=1.26, \mathrm{CHCl}_{3}\right), 90 \%$ ee of (S)-3d). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}$ $7.45-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{tt}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.31(\mathrm{~m}, 2 \mathrm{H})$, $3.97-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=17.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=17.0,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 171.0,153.4$, 134.1, 132.8, 128.9, 127.3, 62.1, 42.4, 42.3, 38.9, 21.3 ppm. IR (ZnSe): 2964, 2922, 1770, 1693, 1383, 1219, 1038, 746, $691 \mathrm{~cm}^{-1}$.
(+)-(R)-3-(3-(4-Methylphenylthio)butanoyl)oxazolidin-2-one (3h): ${ }^{15}$

Product was obtained as a white solid ($137 \mathrm{mg}, 0.490 \mathrm{mmol}$, 98% yield). $\mathrm{mp}=46-47{ }^{\circ} \mathrm{C}$. Reaction time: $20 \mathrm{~h} .83: 17 \mathrm{er}$ determined by HPLC (Daicel ChiralCel ${ }^{\circledR}$ OD-H, hexane $/ i \mathrm{PrOH}$ $=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}(R)=38.3 \mathrm{~min}, t_{\mathrm{R}}(S)=48.6 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+18.7\left(c=1.0, \mathrm{CHCl}_{3}\right)\left(\right.$ litt. $^{15}[\alpha]_{\mathrm{D}}{ }^{25}=-20.1\left(c=1.0, \mathrm{CHCl}_{3}\right), 90 \% e e$ of $\left.(S)-3 \mathrm{~h}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.35$ (dt, $J=8.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10 (dt, $J=8.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $4.37-$ 4.33 (m, 2H), $3.96-3.91$ (m, 2H), 3.67 (m, 1H), 3.23 (dd, $J=17.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, $J=17.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 171.1,153.4,137.7,133.6,130.1,129.7,62.1,42.4,42.3,39.3,21.2,21.1 \mathrm{ppm}$. IR (ZnSe): 2969, 2922, 1771, 1693, 1384, 1220, 1038, 809, $757 \mathrm{~cm}^{-1}$.

(+)-(R)-3-(3-(4-Methoxyphenylthio)butanoyl)oxazolidin-2-one (3i): ${ }^{\mathbf{1 6}}$

Product was obtained as a colorless oil ($139 \mathrm{mg}, 0.471 \mathrm{mmol}$, 94\% yield). Reaction time: $20 \mathrm{~h} .82: 18$ er determined by HPLC (Daicel ChiralCel ${ }^{\circledR}$ OD-H, hexane $/ \mathrm{iPrOH}=90: 10$, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}(R)=36.3 \mathrm{~min}, t_{\mathrm{R}}(S)=43.4 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=+14.7\left(c=2.13, \mathrm{CHCl}_{3}\right)$ (litt. ${ }^{16}[\alpha]_{\mathrm{D}}{ }^{25}=-6.7\left(c=2.13, \mathrm{CHCl}_{3}\right), 86 \%$ ee of $(S)-3 \mathbf{i} ; 1 \mathrm{litt} .{ }^{17}[\alpha]_{\mathrm{D}}{ }^{25}=-5.9\left(c=2.05, \mathrm{CHCl}_{3}\right)$, 78% ee of $(S)-3 i) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.42(\mathrm{dt}, J=8.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dt}, J$ $=8.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.39-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.23$ (dd, $J=17.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=17.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 171.0,159.7,153.4,136.3,123.8,114.4,62.1,55.3$, 42.4, 42.2, 39.8, 21.1 ppm . IR (ZnSe): 2960, 2922, 1771, 1693, 1383, 1241, 1025, 828, 756 cm^{-1}.

(+)-(R)-3-(3-(4-Chlorophenylthio)butanoyl)oxazolidin-2-one (3j): ${ }^{16}$

Product was obtained as a white solid ($142 \mathrm{mg}, 0.474 \mathrm{mmol}$, 95% yield). $\mathrm{mp}=66-68{ }^{\circ} \mathrm{C}$. Reaction time: $20 \mathrm{~h} .81: 19 \mathrm{er}$ determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ i \mathrm{PrOH}$ $=80: 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}(S)=12.0 \mathrm{~min}, t_{\mathrm{R}}(R)=14.1 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+24.8\left(c=2.15, \mathrm{CHCl}_{3}\right)\left(\right.$ litt. $^{16}[\alpha]_{\mathrm{D}}{ }^{25}=-16.47\left(c=2.15, \mathrm{CHCl}_{3}\right), 87 \%$ ee of $(S)-\mathbf{3} \mathbf{j}$; litt. ${ }^{18}$ $[\alpha]_{\mathrm{D}}{ }^{20}=-21.0\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 86 \%$ ee of $\left.(S)-\mathbf{3 j}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.38$
(dt, $J=8.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (dt, $J=8.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.41-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.95$ (m, 2 H), $3.73(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=17.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=17.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 170.8,153.4,134.1,133.4,132.6$, 129.0, 62.1, 42.4, 42.1, 39.2, 21.2 ppm . IR (ZnSe): 2961, 2921, 1778, 1689, 1381, 1204, 1011, $819,758 \mathrm{~cm}^{-1}$.

(+)-(R)-3-(3-(2-Methylphenylthio)butanoyl)oxazolidin-2-one (3k): ${ }^{16}$

Product was obtained as a white solid ($137 \mathrm{mg}, 0.490 \mathrm{mmol}$, 98% yield). $\mathrm{mp}=33-34{ }^{\circ} \mathrm{C}$. Reaction time: 16 h. 86:14 er determined by HPLC (Daicel ChiralCel ${ }^{\circledR}$ OD-H, hexane $/ i \mathrm{PrOH}$ $=95: 5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}(R)=32.2 \mathrm{~min}, t_{\mathrm{R}}(S)=45.1 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+30.1\left(c=2.13, \mathrm{CHCl}_{3}\right)\left(\mathrm{litt} .{ }^{16}[\alpha]_{\mathrm{D}}{ }^{26}=-29.95\left(c=2.13, \mathrm{CHCl}_{3}\right), 95 \%\right.$ ee of $(S)-\mathbf{3 k}$; litt. ${ }^{17}$ $[\alpha]_{\mathrm{D}}{ }^{26}=-30.33\left(c=2.09, \mathrm{CHCl}_{3}\right), 89 \%$ ee of $\left.(S)-\mathbf{3 k}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.43$ $(\mathrm{m}, 1 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.77$ (m, 1H), $3.25(\mathrm{dd}, J=17.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=17.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.36$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 171.0,153.3,140.3,133.7$, 132.6, 130.3, 127.3, 126.3, 62.1, 42.4, 42.4, 38.3, 21.1, 20.8 ppm . IR (ZnSe): 2970, 2922, $1771,1693,1384,1220,1037,751,706 \mathrm{~cm}^{-1}$.

(+)-3-(3-(Pyridin-2-ylthio)butanoyl)oxazolidin-2-one (31):

Product was obtained as a colorless oil ($103 \mathrm{mg}, 0.387 \mathrm{mmol}$, 77% yield). Reaction time: $24 \mathrm{~h} .53: 47$ er determined by HPLC (Daicel ChiralPak ${ }^{\circledR} \mathrm{AD}-\mathrm{H}$, hexane $/ \mathrm{PrOH}=90: 10$, flow rate $=$ $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}$ (minor) $=49.5 \mathrm{~min}, t_{\mathrm{R}}($ major $)=52.4 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=+3.6(c=0.5$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 8.39$ (ddd, $J=4.9,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.45(\mathrm{~m}, 1 \mathrm{H})$, 7.14 (dt, $J=8.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{ddd}, J=7.4,4.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.36$ (m, 2H), 4.04-3.91 (m, 2H), $3.37(\mathrm{dd}, J=17.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=17.1,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.48(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 171.0,158.5,153.5$, 149.4, 135.9, 122.6, 119.5, 62.1, 42.4, 42.2, 35.1, 21.2 ppm . IR (ZnSe): 2966, 2923, 1769, 1691, 1576, 1383, 1218, 1036, $755 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 267.0798, found 267.0798.

(+)-(R)-3-(3-(Furan-2-ylmethylthio)butanoyl)oxazolidin-2-one (3m): ${ }^{15}$

Product was obtained as a yellow solid ($100 \mathrm{mg}, 0.371 \mathrm{mmol}$, 74% yield). $\mathrm{mp}=32-33{ }^{\circ} \mathrm{C}$. Reaction time: $15 \mathrm{~h} .95: 5 \mathrm{er}$ determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ i \mathrm{PrOH}=90: 10$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}(S)=43.8 \mathrm{~min}, t_{\mathrm{R}}(R)=48.2$ $\min .[\alpha]_{\mathrm{D}}{ }^{25}=+29.4\left(c=0.5, \mathrm{CHCl}_{3}\right)\left(\mathrm{litt} .{ }^{15}[\alpha]_{\mathrm{D}}{ }^{25}=-26.4\left(c=1.0, \mathrm{CHCl}_{3}\right), 96 \%\right.$ ee of $(S)-$ 3m). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.30(\mathrm{dd}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=3.2,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.16$ (dd, $J=3.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.78$ (d, J $=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 170.9,153.4,151.7,142.0,110.4,107.4$, 62.1, 42.5, 42.4, 35.7, 27.4, 21.4 ppm. IR (ZnSe): 3513, 3371, 3112, 2976, 2924, 1758, 1691, $1369,1005,748 \mathrm{~cm}^{-1}$.

(+)-(R)-3-(3-(Butylthio)butanoyl)oxazolidin-2-one (3n): ${ }^{18}$

Product was obtained as a colorless oil ($102 \mathrm{mg}, 0.416 \mathrm{mmol}$, 83\% yield). Reaction time: $21 \mathrm{~h} .91: 9$ er determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AS-H, hexane $/ \mathrm{iPrOH}=95: 5$, flow rate $=$ $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}(R)=43.0 \mathrm{~min}, t_{\mathrm{R}}(S)=45.8 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=+7.0\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ (litt. ${ }^{18}[\alpha]_{\mathrm{D}}{ }^{20}=-1.0\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 68 \%$ ee of $\left.(S)-3 n\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}$ $4.38-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.48(\mathrm{~m}$, $2 \mathrm{H}), 1.51-1.45(\mathrm{~m} 2 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 171.1,153.4,62.1,42.5,42.5,35.5,31.7$, 30.2, 22.0, 21.6, 13.6 ppm. IR (ZnSe): 2958, 2926, 1773, 1695, 1384, 1220, 1039, 758, 706 cm^{-1}.

(+)-(R)-3-(3-(Isopropylthio)butanoyl)oxazolidin-2-one (3o): ${ }^{\mathbf{1 5}}$

Product was obtained as a white solid ($102 \mathrm{mg}, 0.441 \mathrm{mmol}$, 88% yield). $\mathrm{mp}=26-27^{\circ} \mathrm{C}$. Reaction time: $43 \mathrm{~h} .83: 17 \mathrm{er}$ determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ i \mathrm{PrOH}$ $=80: 20$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}(S)=16.9 \mathrm{~min}, t_{\mathrm{R}}(R)=20.2 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+6.0\left(c=1.0, \mathrm{CHCl}_{3}\right)\left(\operatorname{litt} .^{15}[\alpha]_{\mathrm{D}}{ }^{25}=-11.5\left(c=1.0, \mathrm{CHCl}_{3}\right), 97 \%\right.$ ee of $\left.(S)-\mathbf{3 o}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 4.40-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.01$
$(\mathrm{m}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}}{ }^{13} \mathrm{C} 171.1,153.4,62.1,42.8,42.5,34.3,34.3$, 23.8, 23.6, 22.1 ppm . IR (ZnSe): 2961, 2923, 1771, 1693, 1383, 1219, 1038, 757, $658 \mathrm{~cm}^{-1}$.

General Procedure for the Michael Addition Reaction of Benzyl Thiol to α, β Unsaturated Carbonyl Compounds Catalyzed by $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathbf{6 H _ { 2 }} \mathbf{O} /(S, S)$-Bolm's Ligand complex:

Under argon atmosphere, a mixture of 1,1'-(2,2'-bipyridine-6,6'-diyl)bis(2,2-dimethylpropan-1-ol) ((S,S)-Bolm's ligand, $9.9 \mathrm{mg}, 0.030 \mathrm{mmol}, 0.06$ equiv), $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(9.1 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.05$ equiv), and activated $4 \AA$ molecular sieves (50 $\mathrm{mg})$ in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ were stirred at $25^{\circ} \mathrm{C}$ for 2 hours (pre-complexation) during in which time the $\mathrm{Fe}^{\mathrm{II}}$ salt was completely dissolved to give a yellow solution. α, β-Unsaturated carbonyl compound $\mathbf{1 b} \mathbf{- k}$ (0.5 mmol , 1 equiv) was introduced, and benzyl thiol $\mathbf{2 a}$ ($293 \mu \mathrm{~L}$, 2.5 mmol , 5 equiv) was added subsequently. The mixture was stirred at $25^{\circ} \mathrm{C}$, and monitored by TLC. After completion of the reaction, the mixture was filtered through a plug of Celite ${ }^{\circledR}$, washed 3 times with $\mathrm{Et}_{2} \mathrm{O}$, and the filtrate was concentrated in vacuo (bath temperature 35 ${ }^{\circ} \mathrm{C}$). The crude residue was purified by a normal phase chromatography (Biotage ${ }^{\circledR}$ SNAP Ultra $25 \mathrm{~g} /$ Biotage ${ }^{\circledR} \mathrm{HP}$-Sphere ${ }^{\mathrm{TM}} 25 \mu \mathrm{~m}$) using a gradient elution of hexane $/ \mathrm{EtOAc}=$ 90:10-40:60 (4b-g), 99:1-90:10 (4h), or 90:10-20:80 (4i), to give thioethers 4b-k. Bolm's ligand L^{*} was recovered quantitatively in the purification process by eluting with hexane $/$ EtOAc $=80: 20\left(R_{f}=0.27\right)$.

(-)-(S)-3-(3-(Benzylthio)-3-phenylpropanoyl)oxazolidin-2-one (4b): ${ }^{15}$

Product was obtained as a white solid $(117 \mathrm{mg}, 0.343 \mathrm{mmol}$, 67% yield). $\mathrm{mp}=83-85^{\circ} \mathrm{C}$. Reaction time: $118 \mathrm{~h} .85: 15 \mathrm{er}$ determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ i \mathrm{PrOH}=90: 10$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}(S)=44.0 \mathrm{~min}, t_{\mathrm{R}}(R)=47.9$
$\min .[\alpha]_{\mathrm{D}}{ }^{25}=-80.0\left(c=1.0, \mathrm{CHCl}_{3}\right)\left(\mathrm{litt}{ }^{15}[\alpha]_{\mathrm{D}}{ }^{25}=+201.0\left(c=1.0, \mathrm{CHCl}_{3}\right), 98 \%\right.$ ee of $(R)-$ 4b). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.39-7.20(\mathrm{~m}, 10 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.25(\mathrm{~m}$, $2 \mathrm{H}), 3.93$ (ddd, $J=11.0,9.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{ddd}, J=11.0,9.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=17.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=17.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 170.1,153.4,141.4,137.9,129.0$, 128.6, 128.4, 128.1, 127.4, 127.0, 62.1, 44.2, 42.4, 41.6, 35.7 ppm. IR (ZnSe): 3060, 2921, 1776, 1690, 1381, 1205, 1037, 757, $695 \mathrm{~cm}^{-1}$.

(-)-Ethyl 2-(benzylthio)-4-oxo-4-(2-oxooxazolidin-3-yl)butanoate (4c):

Product was obtained as a white solid $(165 \mathrm{mg}, 0.489 \mathrm{mmol}$,
 98% yield). $\mathrm{mp}=63-64{ }^{\circ} \mathrm{C}$. Reaction time: $15 \mathrm{~h} .95: 5 \mathrm{er}$ determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ i \mathrm{PrOH}$ $=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}($ minor $)=22.2 \mathrm{~min}, t_{\mathrm{R}}($ major $)=27.4 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{25}=-61.1\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.22$ $(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{qd}, J=7.1,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.88$ $(\mathrm{m}, 3 \mathrm{H}), 3.83(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 171.8,170.4,153.3,137.2,129.1,128.5$, $127.3,62.3,61.4,42.2,40.3,37.5,35.9,14.2 \mathrm{ppm}$. IR (ZnSe): 2983, 2925, 1767, 1725, 1689, 1376, 1170, 1008, $709 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 338.1057$, found 338.1060 .

(+)-3-(3-(Benzylthio)-4,4,4-trifluorobutanoyl)oxazolidin-2-one (4d):

Product was obtained as a white solid ($158 \mathrm{mg}, 0.474 \mathrm{mmol}$, 95% yield). $\mathrm{mp}=77-78{ }^{\circ} \mathrm{C}$. Reaction time: $20 \mathrm{~h} .75: 25 \mathrm{er}$ determined by HPLC (Daicel ChiralCel ${ }^{\circledR}$ OD-H, hexane $/ i \operatorname{PrOH}$ $=85: 15$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=36.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=45.7 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{25}=+18.7\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28$ (m, 1H), $4.42-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{ddd}, J=11.0,8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.88(\mathrm{~m}, 3 \mathrm{H}), 3.73$ $(\mathrm{m}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=17.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=17.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 168.4,153.2,136.7,129.2,128.6,127.5,126.8(\mathrm{q}, J=278.7 \mathrm{~Hz})$, $62.2,42.4,42.2(\mathrm{q}, J=30.2 \mathrm{~Hz}), 37.4,35.3(\mathrm{q}, J=2.1 \mathrm{~Hz}) \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta_{\mathrm{F}}-70.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{~F}) \mathrm{ppm}$. IR (ZnSe): 2929, 1792, 1687, 1392, 1223, 1120, 954, 709, $653 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$334.0719, found 334.0721.

(+)-(R)-3-(3-(Benzylthio)-2-methylpropanoyl)oxazolidin-2-one (4e): ${ }^{19}$

Product was obtained as a white solid ($92 \mathrm{mg}, 0.329 \mathrm{mmol}, 66 \%$ yield). $\mathrm{mp}=46-47{ }^{\circ} \mathrm{C}$. Reaction time: $130 \mathrm{~h} .64: 36 \mathrm{er}$ determined by HPLC (Daicel ChiralCel ${ }^{\circledR}$ OD-H, hexane $/ i \mathrm{PrOH}$ $=70: 30$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{\mathrm{R}}(S)=12.6 \mathrm{~min}, t_{\mathrm{R}}(R)=16.1 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=$ $+20.2\left(c=1.0, \mathrm{CHCl}_{3}\right)\left(\right.$ litt. ${ }^{19}[\alpha]_{\mathrm{D}}{ }^{25}=+60.2\left(c=1.0, \mathrm{CHCl}_{3}\right), 82 \% \mathrm{ee} ;$ litt. ${ }^{20}[\alpha]_{\mathrm{D}}{ }^{20}=+58.8$ $\left(c=1.09, \mathrm{CHCl}_{3}\right), 68 \%$ ee $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~m}$, 1H) $4.40-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.10-3.94(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=13.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=13.4,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=13.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 175.8,153.2,138.2,128.9,128.5,127.0$, 62.0, 42.7, 37.6, 36.4, 34.3, 17.4 ppm. IR (ZnSe): 2968, 2923, 1766, 1690, 1380, 1182, 1000, $753,696 \mathrm{~cm}^{-1}$.

(+)-1-(3-(Benzylthio)butanoyl)pyrrolidin-2-one (4f):

Product was obtained as a colorless oil ($129 \mathrm{mg}, 0.465 \mathrm{mmol}$, 93\% yield). Reaction time: $20 \mathrm{~h} .93: 7$ er determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AS-H, hexane $/ i \operatorname{PrOH}=98: 2$, flow rate $=0.5$ $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=53.5 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=57.8 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=+25.9(c=1.0$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.34-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{tt}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.27-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}$, $2 \mathrm{H}), 1.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 175.3,171.8,138.5$, $128.8,128.4,126.8,45.4,44.1,35.5,35.3,33.6,21.6,17.1 \mathrm{ppm} . \mathrm{IR}(\mathrm{ZnSe}): 3027,2926$, 1734, 1685, 1359, 1248, 1189, 1025, $699 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 278.1209, found 278.1212 .

(-)-3-(Benzylthio)-3-phenyl-1-(pyridin-2-yl)propan-1-one (4g):

Product was obtained as a yellow oil ($140 \mathrm{mg}, 0.420 \mathrm{mmol}$, 84% yield). Reaction time: $15 \mathrm{~h} .52: 48$ er determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ i \operatorname{PrOH}=85: 15$, flow rate $=$ $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=13.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=14.6$ $\min .[\alpha]_{\mathrm{D}}{ }^{25}=-8.9\left(c=0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 8.64(\mathrm{ddd}, J=4.7,1.7$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95 (dt, $J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (td, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.44-7.41$ (m, $3 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 6 \mathrm{H}), 4.51(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=17.4,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{dd}, J=17.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 198.4,153.0,148.9,142.0,137.9,136.8,129.0,128.4$, $128.4,128.2,127.2,127.2,126.7,121.9,44.2,44.1,35.7 \mathrm{ppm}$. IR (ZnSe): 3058, 3025, 2917, 1694, 1331, 1224, 994, 760, $693 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NOSNa}(\mathrm{M}+\mathrm{Na})^{+}$ 356.1080, found 356.1088.

(-)-(S)-3-(benzylthio)-1,3-diphenylpropan-1-one (4h): ${ }^{\mathbf{2 0}}$

Product was obtained as a white solid $(120 \mathrm{mg}, 0.361 \mathrm{mmol}$, 72% yield) $\mathrm{mp}=63-65{ }^{\circ} \mathrm{C}$ (litt. $\mathrm{mp}=60-62{ }^{\circ} \mathrm{C}$)..20 Reaction time: 26 h. 65:35 er determined by HPLC (Daicel ChiralCel ${ }^{\circledR}$
OJ-H, hexane $/ \mathrm{PrOH}=80: 20$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=225$ $\mathrm{nm}, t_{\mathrm{R}}(S)=18.7 \mathrm{~min}, t_{\mathrm{R}}(R)=28.5 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-53.3\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left(\mathrm{litt}^{21}[\alpha]_{\mathrm{D}}{ }^{25}=-193.1\right.$ $\left.\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),>99 \% e e ; \operatorname{litt}^{22}[\alpha]_{\mathrm{D}}{ }^{25}=-67.5\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 54 \% e e\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 7.88-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.21(\mathrm{~m}$, 8 H), 4.48 (dd, $J=7.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (d, $J=13.5, \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ (dd, $J=17.0,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=17.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} 196.7,141.8,137.9,136.7,133.2,128.9,128.6,128.5,128.4,128.1,128.1,127.3$, 127.0, 45.3, 44.2, 35.9 ppm . IR (ZnSe): 3025, 2928, 1680, 1595, 1448, 1226, 981, 766, $686 \mathrm{~cm}^{-1}$.

(-)-2-(3-(Benzylthio)-3-phenylpropanoyl)pyridine 1-oxide (4i):

Product was obtained as a yellow solid ($158 \mathrm{mg}, 0.452 \mathrm{mmol}$, 90% yield) $\mathrm{mp}=92-94{ }^{\circ} \mathrm{C}$. Reaction time: $15 \mathrm{~h} .62: 38 \mathrm{er}$ determined by HPLC (Daicel ChiralPak ${ }^{\circledR}$ AD-H, hexane $/ i \operatorname{PrOH}$ $=70: 30$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, t_{\mathrm{R}}($ major $)=17.6$ $\min , t_{\mathrm{R}}($ minor $)=21.1 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-45.5\left(c=0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}}$ 8.09 (ddd, $J=6.5,1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.15$ (m, 13H), 4.33 (m, 1H), 3.85 (dd, $J=16.9$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=16.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{C}} 194.9,146.6,141.3,140.2,137.8,128.9$, $128.5,128.4,128.0,127.8,127.3,127.0,126.9,125.3,49.1,44.3,35.6 \mathrm{ppm}$. IR (ZnSe): 3057, 3026, 2920, 1684, 1427, 1246, 1075, 759, $696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{SNa}$ $(\mathrm{M}+\mathrm{Na})^{+} 372.1029$, found 372.1038 .

Computational Study

Structure optimizations were carried out without restrictions using the B3LYP functional ${ }^{23}$ as implemented in the Gaussian09 software package. ${ }^{24}$ Unless otherwise stated, the doubly charged iron complexes were treated in their quintet spin state. ${ }^{25}$ The SDD basis set and associate effective core potential was used for iron, ${ }^{26}$ and the $6-31+\mathrm{G}(\mathrm{d})$ basis set for the other elements. ${ }^{27}$ Vibrational frequency calculations were performed to establish that the stationary points are minima. Single point energies of the optimized structures were recalculated with the SDD basis set for iron and cc-pVTZ basis set ${ }^{28}$ for other atoms. The results presented are Gibbs free energies at 298.15 K under $1 \mathrm{~atm}\left(\Delta G_{298}\right)$ in $\mathrm{kcal} / \mathrm{mol}$.

To validate the level of theory, a first set of computations was carried out using 3-acryloyloxazolidin-2-one \mathbf{A} as model substrate (Figure S1). The expected preferred conformation for this compound is the one with the two carbonyls pointing in opposite directions to avoid electronic repulsion between them, and a s-cis conformation of the enone fragment to avoid electronic repulsion between the oxazolidinone carbonyl and the π cloud of the $\mathrm{C}=\mathrm{C}$ bond. This isomer (A4) is indeed the most stable one.

A1 (0.0)

A2 (-2.9)

A3 (-5.8)

A4 (-11.0)

Figure S1. Computed isomers of 3-acryloyloxazolidin-2-one (A1-4) and their relative free energies

3-Acryloyloxazolidin-2-one was then protonated (Figure S2, isomers B1-6). In this case, one expects the two carbonyls to point in the same direction and a s-cis conformation of the enone fragment. This is again respected at our level of theory.

B1 (0.0)

B4 (-5.8)

B2 (-1.5)

B5 (-8.8)

B3 (-4.0)

B6 (-14.9)

Figure S2. Computed isomers of protonated 3-acryloyloxazolidin-2-one (B1-6) and their relative free energies.

The B6-type conformation was thus chosen for the iron complexes IIa-c exhibiting the (E) -3-but-2-enoyloxazolidin-2-one ligand (Figure S3). Complex IIc is the most stable one (see manuscript for the associated discussion).

Figure S3. Computed isomers of the dicationic quintet spin state iron complexes IIa-c and their relative free energies.

Of note, the dicationic complex IIc was reoptimized at the singlet and triplet states, but the obtained structures proved far less stable ($\Delta \Delta G_{298}=32.7$ and $23.8 \mathrm{kcal} / \mathrm{mol}$ respectively).

Coordinates ($\mathbf{x}, \mathrm{y}, \mathrm{z}$) and energies of complexes IIa-c:

$\begin{aligned} & \text { IIa } \\ & \mathrm{E}(\mathrm{UB} 3 \mathrm{LYP})=-1847.92842990 \end{aligned}$				$\begin{gathered} \text { IIb } \\ \mathrm{E}(\mathrm{UB} 3 \mathrm{LYP})=-1847.92658394 \end{gathered}$			
C	0.741747	1.652183	-2.129969	C	1.430672	-2.002635	-0.980518
C	1.062285	2.935616	-0.03383	C	3.641231	-1.640803	0.091741
C	1.432476	3.894467	-2.379501	C	3.181762	-3.340301	-1.787046
C	1.034448	3.274099	-3.730685	C	1.998809	-3.32642	-2.76675
C	1.532494	4.213636	0.511314	C	4.923504	-2.304916	0.333244
C	1.536228	4.446676	1.84155	C	5.850855	-1.739915	1.136863
C	2.000957	5.70524	2.488428	C	7.173285	-2.334918	1.473465
H	0.891364	4.821986	-2.184739	H	4.127201	-3.108471	-2.280058
H	2.508851	4.078379	-2.309401	H	3.270007	-4.295323	-1.258485
H	1.815063	3.33757	-4.48827	H	1.6452	-4.318192	-3.046308
H	0.098721	3.675529	-4.126274	H	2.193461	-2.731203	-3.66248
H	1.888527	4.980334	-0.167895	H	5.115589	-3.270173	-0.124404
H	1.170291	3.657622	2.498464	H	5.616803	-0.771235	1.577777
H	2.352167	6.447862	1.766881	H	7.33645	-3.306368	0.998584
H	2.812086	5.488896	3.197358	H	7.266752	-2.451414	2.562057
H	1.190554	6.14614	3.085128	H	7.980981	-1.652543	1.174716
N	1.030409	2.831391	-1.430612	N	2.789295	-2.263591	-0.853282
O	0.705871	1.989507	0.688418	O	0.730002	-1.31298	-0.253578
O	0.472991	0.551145	-1.676084	O	3.293243	-0.598631	0.651229
O	0.81734	1.868385	-3.439839	O	0.931353	-2.669586	-2.026055
C	-3.749816	-1.206327	-1.931259	C	0.598316	3.159528	-2.511512
C	-2.888691	-0.62236	-0.995198	C	0.52245	2.422884	-1.321715
C	-4.349009	2.316326	1.172179	C	3.284929	3.185805	1.371762
C	-1.498118	-2.497412	-1.028723	C	-1.688913	1.796862	-1.8069
C	-2.342535	-3.157668	-1.924341	C	-1.690062	2.547153	-2.98299
C	-3.472788	-2.490226	-2.394686	C	-0.521199	3.223177	-3.339642
C	-0.236359	-3.091477	-0.522134	C	-2.83302	0.977401	-1.332497
C	5.026321	-2.617228	0.13035	C	-4.559144	-3.680461	0.683272
C	1.843491	-2.643722	0.439578	C	-3.472685	-0.71264	0.16262
C	2.137582	-4.010366	0.513923	C	-4.813564	-0.577736	-0.217084
C	1.210309	-4.927596	0.024479	C	-5.143045	0.341149	-1.212162
C	0.012946	-4.466067	-0.5213	C	-4.141951	1.11954	-1.795454
C	-3.154976	0.758059	-0.414832	C	1.683598	2.28541	-0.337671
C	-4.32994	0.869514	0.6226	C	2.123022	3.579371	0.433533
C	4.891753	-0.172517	0.619649	C	-2.443646	-4.06229	1.950183
C	2.822542	-1.578577	0.910355	C	-3.014458	-1.717913	1.211672

C	4.11362	-1.376282	0.03826	C	-3.08635	-3.23482	0.810573
C	3.755983	-1.105686	-1.433826	C	-2.347799	-3.502664	-0.512327
C	-5.680091	0.616912	-0.081759	C	2.63648	4.655938	-0.545655
C	-4.162713	-0.125865	1.784042	C	0.9608	4.155468	1.261344
H	5.110465	-0.303074	1.688016	H	-2.890652	-3.836233	2.926979
H	3.091817	-0.241743	-1.536413	H	-1.300885	-3.189191	-0.466362
H	3.260487	-1.966333	-1.897123	H	-2.819953	-2.98115	-1.352868
H	4.666998	-0.904025	-2.008135	H	-2.370333	-4.574466	-0.738542
H	-4.610363	-0.66173	-2.301378	H	1.516332	3.659551	-2.794135
H	-2.103994	-4.150883	-2.287075	H	-2.560169	2.579387	-3.629081
H	-4.123969	-2.962804	-3.123979	H	-0.481164	3.787657	-4.266576
H	3.065357	-4.351156	0.957407	H	-5.585997	-1.166723	0.262008
H	1.414659	-5.992991	0.07409	H	-6.176466	0.459246	-1.524287
H	-0.722567	-5.167807	-0.89771	H	-4.38964	1.846405	-2.56084
H	-3.391901	1.437205	-1.245998	H	2.557573	1.933418	-0.901862
H	-2.020734	1.959452	0.711636	H	2.051082	0.558964	0.631781
H	3.143889	-1.833083	1.93027	H	-3.631432	-1.580225	2.110288
H	2.541879	0.346247	1.409109	H	-1.270729	-1.999272	2.147049
H	-6.498761	0.845507	0.608443	H	3.109468	5.46214	0.024664
H	-5.810612	1.25618	-0.964051	H	3.394506	4.262594	-1.235593
H	-5.802148	-0.427272	-0.383897	H	1.831379	5.113039	-1.12921
H	-4.983051	-0.002519	2.499865	H	1.294473	5.055857	1.788921
H	-3.22187	0.034518	2.319524	H	0.614695	3.436008	2.008753
H	-4.184339	-1.164193	1.434152	H	0.109841	4.441156	0.630698
H	-5.234254	2.462319	1.799463	H	3.63958	4.069818	1.912479
H	-4.394679	3.060309	0.366634	H	4.13593	2.782044	0.808281
H	-3.488753	2.547128	1.817444	H	2.978366	2.441361	2.11234
H	5.988927	-2.395678	-0.342227	H	-4.598614	-4.769038	0.572291
H	4.608957	-3.481124	-0.394926	H	-5.048619	-3.257784	-0.19882
H	5.233846	-2.90241	1.169731	H	-5.14894	-3.423822	1.572409
H	5.852742	-0.067934	0.105585	H	-2.599884	-5.129578	1.763752
H	4.363485	0.780068	0.480403	H	-1.354175	-3.931536	2.01906
N	-1.771682	-1.248265	-0.588674	N	-0.595083	1.748204	-1.01383
N	0.663167	-2.210124	-0.032104	N	-2.526699	0.076322	-0.369851
O	-1.892066	1.181041	0.148084	O	1.331113	1.241012	0.607573
O	2.044576	-0.363254	0.976265	O	-1.656297	-1.331186	1.55847
Fe	-0.070446	-0.138742	0.321405	Fe	-0.590354	0.311516	0.576152
N	-0.537149	-0.551293	2.430861	N	-1.359607	1.536825	2.203649
C	-0.723752	-0.830453	3.539084	C	-1.749325	2.147048	3.10701
C	-0.970421	-1.183116	4.932973	C	-2.229143	2.925523	4.24239
H	-2.048451	-1.23328	5.118778	H	-1.634369	3.839728	4.341515
H	-0.527988	-2.159319	5.156831	H	-3.278804	3.199174	4.093553
H	-0.529842	-0.431842	5.596366	H	-2.138746	2.340677	5.163599

	IIc			
	E(UB3LYP $)=-1847.92932447$			
C	-0.476993	2.790433	-1.493179	
C	-0.594088	2.547781	0.971173	
C	-0.793187	4.781508	-0.268674	
C	-0.965325	5.018861	-1.78072	
C	-0.695904	3.291713	2.228864	
C	-0.748479	2.647768	3.414954	
C	-0.85434	3.312122	4.743549	
H	-1.669546	5.107739	0.294059	
H	0.09913	5.273514	0.129682	
H	-0.311497	5.794163	-2.179311	
H	-1.999307	5.221887	-2.067666	
H	-0.73015	4.375264	2.203751	
H	-0.718373	1.558632	3.404889	
H	-0.874683	4.403035	4.672032	
H	-0.01311	3.014314	5.384522	
H	-1.761756	2.974147	5.262879	
N	-0.640607	3.310236	-0.207419	
O	-0.260516	1.631259	-1.820205	
O	-0.483007	1.313285	0.9317	
O	-0.581371	3.760649	-2.397848	
C	3.384815	-0.871348	2.339353	
C	2.684514	-0.551954	1.169806	
C	4.755891	1.128914	-1.720703	
C	0.9897	-2.065817	1.713062	
C	1.663414	-2.467258	2.869084	
C	2.867838	-1.843262	3.192634	
C	-0.324208	-2.62486	1.308011	
C	-5.385245	-1.733222	-0.146624	
C	-2.232289	-2.290728	0.004162	
C	-2.746911	-3.535753	0.385615	
C	-2.02119	-4.322379	1.277107	
C	-0.79992	-3.856809	1.763475	
C	3.218507	0.460562	0.167207	
C	4.448609	0.00639	-0.700014	
C	-4.788454	0.312908	-1.450367	
C	-2.980532	-1.361058	-0.940597	
C	-4.280687	-0.681014	-0.380259	
C	-3.995134	0.067661	0.934008	
		5.693507	-0.164561	0.19637

H	-4.943534	-0.175228	-2.42192	
H	-3.197889	0.807947	0.812865	
H	-3.700748	-0.620132	1.735338	
H	-4.897809	0.591535	1.267529	
H	4.310033	-0.362597	2.582909	
H	1.242517	-3.218495	3.527497	
H	3.393952	-2.108167	4.105021	
H	-3.687066	-3.890353	-0.019204	
H	-2.397656	-5.29415	1.582446	
H	-0.216583	-4.464035	2.446237	
H	3.528416	1.357935	0.721191	
H	2.385957	1.21904	-1.483343	
H	-3.262349	-1.93637	-1.833575	
H	-2.300733	0.118174	-2.118858	
H	6.575066	-0.323143	-0.433371	
H	5.887774	0.72561	0.807935	
H	5.615594	-1.034094	0.855569	
H	5.036194	-1.580007	-2.058079	
H	3.30162	-1.229332	-2.104723	
H	3.990647	-2.139856	-0.7482	
H	5.681438	0.896582	-2.257107	
H	4.8964	2.100656	-1.231062	
H	3.985793	1.237634	-2.498755	
H	-6.328355	-1.225781	0.081904	
H	-5.165573	-2.386887	0.702574	
H	-5.558811	-2.354644	-1.034478	
H	-5.753095	0.729862	-1.143193	
H	-4.109894	1.164172	-1.587534	
N	1.495493	-1.114738	0.894815	
N	-1.030326	-1.873091	0.434622	
O	2.084153	0.824574	-0.649921	
O	-2.008852	-0.367088	-1.332662	
Fe	0.072327	-0.208911	-0.548889	
N	0.579302	-1.431869	-2.308416	
C	0.762569	-2.057695	-3.265347	
C	1.003303	-2.84301	-4.470701	
H	2.066702	-3.09348	-4.545756	
H	0.423596	-3.771211	-4.436704	
H	0.709574	-2.27059	-5.356662	

References

(1) (a) Bolm, C.; Zehnder, M.; Bur, D. Angew. Chem., Int. Ed. Engl. 1990, 29, 205-207. (b) Bolm, C.; Ewald, M.; Felder, M.; Schlingloff, G. Chem. Ber. 1992, 125, 1169-1190. (c) Ishikawa, S.; Hamada, T.; Manabe, K.; Kobayashi, S. Synthesis 2005, 2176-2182.
(2) Nakamura, T.; Oshida, M.; Nomura, T.; Nakazaki, A.; Kobayashi, S. Org. Lett. 2007, 9, 5533-5536.
(3) Sibi, M. P.; Sausker, J. B. J. Am. Chem. Soc. 2002, 124, 984-991.
(4) Andrade, C. K. Z.; Rocha, R. O.; Vercillo, O. E.; Silva, W. A.; Matos, R. A. F. Synlett 2003, 2351-2352.
(5) Soloshonok, V. A.; Cai, C.; Hruby, V. J. J. Org. Chem. 2000, 65, 6688-6696.
(6) Tamura, K.; Yamazaki, T.; Kitazume, T.; Kubota, T. J. Fluorine Chem. 2005, 126, 918930.
(7) Evans, D. A.; Scheidt, K. A.; Johnston, J. N.; Willis, M. C. J. Am. Chem. Soc. 2001, 123, 4480-4491.
(8) Bazin, S.; Feray, L.; Vanthuyne, N.; Bertrand, M. P. Tetrahedron 2005, 61, 4261-4274.
(9) Pei, W.; Wang, Y.-J.; Yu, C.-Q. Chin. J. Chem. 2007, 25, 814-817.
(10) Albaladejo, M. J.; Alonso, F.; Gonzalez-Soria, M. J. ACS Catal. 2015, 5, 3446-3456.
(11)Holmquist, M.; Blay, G.; Munoz, M. C.; Pedro, J. R. Org. Lett. 2014, 16, 1204-1207.
(12)Barroso, S.; Blay, G.; Pedro, J. R. Org. Lett. 2007, 9, 1983-1986.
(13)Merey, G.; Anaç, O. Helv. Chim. Acta 2011, 94, 1053-1064.
(14)Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng, L. J. Am. Chem. Soc. 2009, 131, 418419.
(15)Dai, L.; Yang, H. J.; Chen, F. Eur. J. Org. Chem. 2011, 5071-5076.
(16)Kawatsura, M.; Komatsu, Y.; Yamamoto, M.; Hayase, S.; Itoh, T. Tetrahedron 2008, 64, 3488-3493.
(17)Kanemasa, S.; Oderaotoshi, Y.; Wada, E. J. Am. Chem. Soc. 1999, 121, 8675-8676.
(18) Abe, A. M. M.; Sauerland, S. J. K.; Koskinen, A. M. P. J. Org. Chem. 2007, 72, 54115413.
(19)Rana, N. K.; Singh, V. K. Org. Lett. 2011, 13, 6520-6523.
(20)Kitanosono, T.; Sakai, M.; Ueno, M.; Kobayashi, S. Org. Biomol. Chem. 2012, 10, 71347147.
(21)Bonollo, S.; Lanari, D.; Pizzo, F.; Vaccaro, L. Org. Lett. 2011, 13, 2150-2152.
(22)Ricci, P.; Carlone, A.; Bartoli, G.; Bosco, M.; Sambri, L.; Melchiorre, P. Adv. Synth. Catal. 2008, 350, 49-53.
(23)(a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. (b) Lee, C.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. (c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206.
(24)Frisch, M. J.; Trucks G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;

Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D.01; Gaussian, Inc., Wallingford, CT, 2009.
(25) Sameera, W. M. C.; Hatanaka, M.; Kitanosono, T.; Kobayashi, S.; Morokuma, K. J. Am. Chem. Soc. 2015, 137, 11085-11094.
(26)(a) Fuentealba, P.; Preuss, H.; Stoll, H.; Von Szentpály, L. Chem. Phys. Lett. 1982, 89, 418-422. (b) T. H. Dunning Jr. and P. J. Hay; Plenum, New York, 1977: Modern Theoretical Chemistry; Vol. 3, 1-28.
(27)(a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261. (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222. (d) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654-3665.
(28)(a) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007-1023. (b) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796-6806. (c) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358-1371.

${ }^{1} \mathbf{H}$ and ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR Spectra

$\stackrel{\circ}{\circ}$

\pm	ले	$\bar{\square}$	¢		앙	∞
$\stackrel{\text { ® }}{\sim}$	$\stackrel{\sim}{8}$	¢	ल్ల్ర	$\stackrel{\text { ¢̈ }}{\text { - }}$	¢ ¢	-
	1		11\|	\|	Y	\/

1	1	T	1	T	I	1	1	1	1	1	1	1	1	1	1	1	1	T
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0
									M									

S-33

${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 f}$

$\stackrel{N}{\sim}$

S-38

$\stackrel{\infty}{\infty}$

$t_{N} \lambda_{S}+i_{N} 0_{0}$

$\stackrel{\infty}{\infty}$

HPLC Chromatograms

96:4 er of 3a

Racemate of 3a

95:5 er of 3b

Racemate of 3b

95:5 er of 3c

Racemate of 3c

96:4 er of 3d

Racemate of 3d

94:6 er of 3e

Racemate of $\mathbf{3 e}$

94:6 er of 3f

Racemate of $\mathbf{3 f}$

81:19 er of $\mathbf{3 g}$

Racemate of $\mathbf{3 g}$

83:17 er of 3h

Racemate of 3h

$82: 18$ er of $\mathbf{3 i}$

Racemate of 3i

81:19 er of $\mathbf{3 j}$

Racemate of $\mathbf{3 j}$

86:14 er of $\mathbf{3 k}$

Racemate of $\mathbf{3 k}$

53:47er of 31

Racemate of 31

95:5 er of 3m

Racemate of 3m

91:9 er of 3n

Racemate of 3n

83:17 er of $\mathbf{3 o}$

Racemate of $\mathbf{3 o}$

85:15 er of 4b

Racemate of 4b

95:5 er of $\mathbf{4 c}$

Racemate of $\mathbf{4 c}$

75:25 er of 4d

Racemate of 4d

64:36 er of 4e

Racemate of $\mathbf{4 e}$

93:7er of $\mathbf{4 f}$

Racemate of $\mathbf{4 f}$

52:48 er of $\mathbf{4 g}$

Racemate of $\mathbf{4 g}$

65:35 er of 4h

Racemate of 4h

62:38 er of $\mathbf{4 i}$

Racemate of $\mathbf{4 i}$

