A Calorimetric Study of the Activation of Hydrogen by tris(pentafluorophenyl)borane and trimesitylphosphine.

Adrian Y. Houghton, Tom Autrey
Institute for Integrated Catalysis, Pacific Northwest National Laboratory. 902 Battelle
Boulevard P.O. Box 999, Richland, WA. 99352 USA.

General Considerations

All manipulations were carried out under an inert nitrogen $\left(\mathrm{N}_{2}\right)$ atmosphere using standard Schlenk or glovebox techniques unless otherwise stated. Dichloromethane was passed through a neutral alumina column under argon prior to use. tris(pentafluorophenyl)borane was obtained from Boulder Scientific and purified by sublimation under reduced pressure at $90^{\circ} \mathrm{C}$. All NMR spectra were recorded on 500 MHz Varian INOVA spectrometers. ${ }^{19} \mathrm{~F}$ NMR spectra were referenced to fluorobenzene as an external standard ($\delta=-113.15 \mathrm{ppm}$). Calorimetric measurements were performed on a Setaram C80 Calvet calorimeter, and instrument was operated in isothermal mode. Measurements were conducted in modified Hastealloy ${ }^{\circledR}$ reversal mixing cells (6.7 mL). The commercial mixing vessels were modified to include an inlet with 0.030" ID PEEK tubing that allowed gases to be introduced.

Time Constant Determination

The two compartments of a C 80 cell were charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(51.2 \mathrm{mg}$, $0.100 \mathrm{mmol}, 1.0 \mathrm{~mL}$) and pyrazine ($80.1 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0 \mathrm{~mL}$), and a reference cell was charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$. The cells were pressurized with $\mathrm{N}_{2}(100 \mathrm{psig})$ and placed in the calorimeter. Once heatflow had stabilized near zero, the reaction was initiated by reversal mixing. This experiment was carried out at $29.1^{\circ} \mathrm{C}$ and $88.5^{\circ} \mathrm{C}$, and the heat curves were fit to the following formula:

$$
\frac{\partial Q(t)}{\partial t}=A \frac{e^{-\left(t-t_{o}\right) / \tau_{1}}-e^{-\left(t-t_{o}\right) / \tau_{2}}}{1 / \tau_{2}-1 / \tau_{1}}
$$

Where $\partial Q(t) / \partial t$ is the heatflow at time t, τ_{1} is the mixing time, τ_{2} is the instrument time constant, and A is a fitting parameter. $\tau_{1}=15.1 \mathrm{~s} ; \tau_{2}=310 \mathrm{~s}\left(29.1^{\circ} \mathrm{C}\right), 278 \mathrm{~s}\left(88.5^{\circ} \mathrm{C}\right) . \Delta \mathrm{H}=\mathrm{XX} \mathrm{kJ} / \mathrm{mol}$. It was assumed that τ_{2} varied linearly over the experimental temperature range.

C80 Experiments

In a typical experiment, the two compartments of a C 80 cell were charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(1.0 \mathrm{~mL})$ and $\mathrm{P}(\mathrm{mes})_{3}(1.0 \mathrm{~mL})$, and a reference cell was charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0$ $\mathrm{mL})$. The cells were pressurized with $\mathrm{H}_{2}(100-400 \mathrm{psig})$ and placed in the calorimeter at the desired reaction temperature ($30-90^{\circ} \mathrm{C}$). Once heatflow had stabilized near zero, the reaction
was initiated by reversal mixing, and data points were collected every 1.2 s until heatflow returned to the baseline. The degree of reaction was confirmed by ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy.

Berkeley Madonna Model

Method RK4

```
{1: H2gas <--> H2soln}
    RXN1 = K1f*H2gas - K1r*H2soln
    K1f = 1000
    K1r=K1f/Kh
    Kh=1/(X*exp(Y*(1-298.15/T)))*Rg*T*rho/mwt {H2soln/H2gas} {J. Chem. Eng. Data,
2008, 53, 1867}
    rho=-0.0016942*T+1.8204 {ref}
    INIT(H2soln)=Kh*INIT(H2gas)
    INIT(H2gas) = (PH2*T/294)*1000/T/Rg {mol/L}
    d/dt(H2soln)=RXN1-RXN3
    d/dt(H2gas)=-V/Vg*RXN1
```

\{2a: A --> LA \}
RXN2a=1/taumix*A
taumix $=2.92$
$\operatorname{INIT}(\mathrm{A})=$ Ao
INIT(LA)=0
d/dt(A)= -RXN2a
\{2b: B --> LB $\}$
RXN2b=1/taumix*B
$\operatorname{INIT}(\mathrm{B})=$ Bo
d/dt(B)=-RXN2b
INIT(LB)=0
d/dt(LA)=RXN2a-RXN3-RXN5
$d / d t(L B)=R X N 2 b-R X N 3-R X N 5$
\{2c: C—> W \}
RXN2c=1/taumix* ${ }^{*}$
$\operatorname{INIT}(\mathrm{C})=\mathrm{Co}$
d/dt(C)=-RXN2c
$\operatorname{INIT}(W)=0$
d/dt(W)=RXN2c-RXN5
$\{3:$ LA + LB + H2soln \longrightarrow IP $\}$
RXN3=k3*LA*LB*H2soln
INIT(IP) $=0$
$\mathrm{d} / \mathrm{dt}(\mathrm{IP})=$ RXN3

```
{4: Q --> R} {C80 heat flow processes}
    RXN4=Q/tc
    INIT(Q) =0
    INIT(R) =0
    tc = 357.55
    d/dt(Q)=(RXN1*DH1*(V+Vg)+RXN3*V*DH3+RXN5*V*DH5)*1e+6-RXN4
    d/dt(R) = RXN4
{5: 2LA + LB + W—> HP}
    RXN5=k5*LA*LA*LB*W
    INIT(HP)=0
    d/dt(HP)=RXN5
    k5=72955
METHOD STIFF
DT=0.01
STARTTIME = 0
STOPTIME=7040
OUTPUT= -RXN4+Pf+Po+m1*(time-starttime)+m2*(time-starttime)^2+m3*(time-starttime)^3
{parameters}
    Pf=0
    Po=-0.03
    m1=0
    m2=0
    m3=0
    mwt=84.93
    X=537
    Y=-3.57
    k3=100
    Rk=1.9872041
    Rg=8.3144598 {mL MPa K-1 mol-1}
    PH2=(117-14.4)*0.00689475728 {conversion from psi to MPa}
    T=302.8
    DH1=10.376 {DCM}
    DH3=-92.7
    DH5=-176
    Ao=0.04995
    Bo=0.04965
    Co=0
    V=0.002*1.32/rho-0.0000083 {adjusted for density changes and loss of vapour, using the
Clausius-Clapeyron equation}
```

 \(\mathrm{Vg}=0.0067-\mathrm{V}\)

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.0497 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0500$ $\mathrm{M})$, and $\mathrm{H}_{2}(6.98 \mathrm{~atm}, 4.7 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 302.8 K

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.0496 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0500$ M), and $\mathrm{H}_{2}(13.5 \mathrm{~atm}, 4.7 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 302.4 K

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.0496 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0500$ M), and $\mathrm{H}_{2}(20.4 \mathrm{~atm}, 4.7 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 302.4 K

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.0493 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0499$ M), and $\mathrm{H}_{2}(27.2 \mathrm{~atm}, 4.7 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 302.4 K

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.0494 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0489$ $\mathrm{M})$, and $\mathrm{H}_{2}(6.91 \mathrm{~atm}, 4.7 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 322.3 K

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.0505 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0500$ M), and $\mathrm{H}_{2}(6.91 \mathrm{~atm}, 4.7 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 341.9 K

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.0505 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0500$ M), and $\mathrm{H}_{2}(6.91 \mathrm{~atm}, 4.7 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 361.7 K

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.00955 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0965$ M), and $\mathrm{H}_{2}(6.89 \mathrm{~atm}, 4.7 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 302.8 K

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.096 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0095 \mathrm{M})$, and $\mathrm{H}_{2}(6.89 \mathrm{~atm}, 4.7 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 302.4 K

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.0505 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0505$ M), and $\mathrm{D}_{2}(6.80 \mathrm{~atm}, 4.7 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 302.8 K (trial 1)

Figure SX: Heat trace and fitted data for the reaction of $\mathrm{P}(\mathrm{mes})_{3}(0.0505 \mathrm{M}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.0505$ M), and D_{2} ($6.80 \mathrm{~atm}, 4.7 \mathrm{~mL}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at 302.8 K (trial 2)

