## Influence of proton conducting cations on the structure and properties of 2D anilate-based magnets

Mario Palacios-Corella,<sup>a</sup> Alejandro Fernández-Espejo,<sup>a</sup> Montse Bazaga-García,<sup>b</sup>

Enrique R. Losilla,<sup>b</sup> Aurelio Cabeza,<sup>b</sup> Miguel Clemente-León,<sup>a</sup>\* Eugenio Coronado,<sup>a</sup>\*

<sup>a</sup>Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain

<sup>b</sup>Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain

## Contents

Figure S1. Projection in the *ab* plane of two neighboring layers of 1 (top), 2 (middle) and 3 (bottom).

Figure S2 (a) Powder X ray diffraction pattern (blue) and simulated one (red) for crystals of 1; (b) Comparison between simulated powder diffraction data (red) and powder diffraction pattern (blue) obtained by quick precipitation for 1; (c) Simulated (red) and observed (blue) powder diffraction patterns for 2; and (d) ) Simulated (red) and observed (blue) powder diffraction patterns for 3.

Figure S3. Projection in the *ab* plane of two neighboring layers of 4 belonging to the same bilayer.

**Figure S4.** Projection in the *bc* plane of the compound [(Et)(i-Pr)<sub>2</sub>NH][Mn<sup>II</sup>Cr<sup>III</sup>(Br<sub>2</sub>An)<sub>3</sub>]·(CHCl<sub>3</sub>)<sub>0.5</sub>·(H<sub>2</sub>O) (4) showing Br····Br intermolecular interactions (red dashed lines). (Cr (green), Mn (pink) C (black), N (blue), O (red), Cl (yellow) Br (brown)). Solvent molecules and [(Et)(i-Pr)<sub>2</sub>NH]<sup>+</sup> cations have been omitted for clarity.

**Figure S5.** Projection in the *ab* plane with  $[(Et)(i-Pr)_2NH]^+$  cations and disordered solvent molecules (CHCl<sub>3</sub> and H<sub>2</sub>O) in the interlayer space of **4**.

Figure S6. (a) Powder X ray diffraction patterns of a polycristalline sample of 4 immediately after filtering (blue), several days after filtering (green), after several days in contact with a CHCl<sub>3</sub>/MeOH mixture (black) and simulated pattern from single crystal measured at 120 K (red). (b) Powder X ray diffraction pattern of a powder of 4 obtained by mixing quickly the precursors in methanol (red) and of dry crystals of 4 after proton conduction measurements at 70° C with 95 % RH (blue).

**Figure S7.** Temperature dependence of the in-phase AC susceptibility  $(\chi')$  (filled symbols) and the out-of-phase AC susceptibility  $(\chi'')$  of crystals of 4 measured in contact with the mother liquor.

**Figure S8.** Temperature dependence of the product of the molar magnetic susceptibility times the temperature ( $\chi_M T$ ) of filtered crystals of 4.

**Figure S9.** Temperature dependence of the in-phase AC susceptibility  $(\chi')$  (filled symbols) and the out-of-phase AC susceptibility  $(\chi'')$  of filtered crystals of 4.

Figure S10. Hysteresis measurements of filtered crystals 4 at 2 K.

**Figure S11.** Temperature dependence of the in-phase AC susceptibility ( $\chi$ ') (filled symbols) and the out-of-phase AC susceptibility ( $\chi$ '') at 110 Hz of crystals of 4 in contact with the mother liquor (circles), filtered (squares) and reimmersed in a MeOH/CHCl<sub>3</sub> solvent mixture (triangles).

Figure S12. TGA of 1.

Figure S13. As synthesized (blue) and after impedance measurement (red) PXRD patterns for: 1 (a), 2 (b), 3 (c) and 4 (d).

Figure S14. Complex impedance plane plot for 1 (a), 2 (b), 3 (c) and 4 (d) at 95% RH and six temperatures: 343 K (black), 333 K (red), 323 K (green), 313 K (blue), 303 K (cyan) and 298 K (magenta).



Figure S1. Projection in the *ab* plane of two neighboring layers of 1 (top), 2 (middle) and 3 (bottom).



**Figure S2.** (a) Powder X ray diffraction pattern (blue) and simulated one (red) for crystals of 1; (b) Comparison between simulated powder diffraction data (red) from single crystal and powder pattern (blue) obtained by quick precipitation for 1; (c) Simulated (red) and observed (blue) powder diffraction pattern for 2; and (d) Simulated (red) and observed (blue) powder diffraction pattern for 3.



Figure S3. Projection in the *ab* plane of two neighboring layers of 4 belonging to the same bilayer.



**Figure S4.** Projection in the *bc* plane of the compound [(Et)(i-Pr)<sub>2</sub>NH][Mn<sup>II</sup>Cr<sup>III</sup>(Br<sub>2</sub>An)<sub>3</sub>]·(CHCl<sub>3</sub>)<sub>0.5</sub>·(H<sub>2</sub>O) (**4**) showing Br···Br intermolecular interactions (red dashed lines). (Cr (green), Mn (pink) C (black), N (blue), O (red), Cl (yellow) Br (brown)). Solvent molecules and [(Et)(i-Pr)<sub>2</sub>NH]<sup>+</sup> cations have been omitted for clarity.



**Figure S5.** Projection in the *ab* plane with  $[(Et)(i-Pr)_2NH]^+$  cations and disordered solvent molecules (CHCl<sub>3</sub> and H<sub>2</sub>O) in the interlayer space of **4**.



(a)



(b)

**Figure S6.** (a) Powder X ray diffraction pattern of a powdered sample of crystals of **4** immediately after filtering (blue), several days after filtering (green) and after several days in contact with a CHCl<sub>3</sub>/MeOH mixture (black) and simulated pattern obtained from the single crystal X-ray diffraction structure solved at 120 K (red). (b) Powder X ray diffraction pattern of a powder of **4** obtained by mixing quickly the precursors in methanol (red) and of dry crystals of **4** after proton conduction measurements at 80° C with 95 % RH (blue).



**Figure S7.** Temperature dependence of the in-phase AC susceptibility ( $\chi$ ') (filled symbols) and the outof-phase AC susceptibility ( $\chi$ '') of crystals of 4 measured in contact with the mother liquor.



**Figure S8.** Temperature dependence of the product of the molar magnetic susceptibility times the temperature  $(\chi_M T)$  of filtered crystals of **4**.



**Figure S9.** Temperature dependence of the in-phase AC susceptibility  $(\chi')$  (filled symbols) and the outof-phase AC susceptibility  $(\chi'')$  of filtered crystals of 4.



Figure S10. Hysteresis measurements of filtered crystals 4 at 2 K.



**Figure S11.** Temperature dependence of the in-phase AC susceptibility ( $\chi'$ ) (filled symbols) and the outof-phase AC susceptibility ( $\chi''$ ) at 110 Hz of crystals of **4** in contact with the mother liquor (circles), filtered (squares) and reimmersed in a MeOH/CHCl<sub>3</sub> solvent mixture (triangles).



Figure S12. TGA of 1.



Figure S13. As synthesized (blue) and after impedance measurement (red) PXRD patterns for: 1 (a), 2 (b), 3 (c) and 4 (d).



Figure S14. Complex impedance plane plot for 1 (a), 2 (b), 3 (c) and 4 (d) at 95% RH and six temperatures: 343 K (black), 333 K (red), 323 K (green), 313 K (blue), 303 K (cyan) and 298 K (magenta).