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Reoptimization scheme

Reoptimization without uncertainties

Figure 1: Reoptimization with two objectives, illustrated for the objective f1 on the horizontal
axis. The open circle indicates the point found without reoptimization; the full circle denotes the
reoptimized point.

When calculating the nominal Pareto boundary, it can happen that the design parameters for the

extreme compromises are not unique, since the optimal value of one objective function does not

need to depend on all design parameters. Then, changing those parameters which do not influence

that optimal value can only influences the values of the other objectives. Thus, these can be chosen

such that the other objectives are as close to their optimal values as possible, while not increasing

the value of the optimized objective function above the value found for its minimum. We call this

algorithm “reoptimization”and perform it by default after each run for an extreme compromise. It

is sketched in figure 1 for the case with two objectives.

Mathematically, this is expressed as follows: Suppose all objective functions fk=1,...,Nobj (Nobj = 2

in figure 1) are to be minimized as functions of the free design parameters xi=1,...,Nvar . We consider

the k-th objective fk (k = 2 in Fig. 1). Assume that the minimum for the corresponding extreme
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compromise was found as solution of

min
x

fk = f ∗k (1)

s.t. g(x) ≥ 0 , (2)

where x = (x1, x2, . . . , xNvar)
T , and inequality conditions are lumped in a vector g. This leads to a

design x∗ and objectives f j (x∗) =: f ∗j . Then, the reoptimization step consists in

min
x

Nobj∑
j,k

f j(x) (3)

s.t. fk(x) ≤ f ∗k (4)

g(x) ≥ 0 , (5)

leading to reoptimized values of the objective functions f ∗j,reopt ≤ f ∗j . The minimization in Equation

(3) is done with respect to all free design parameters, the sum therein carries over all objectives

except the k-th. The equal weighting of the objectives in equation (3) is chosen here arbitrarily;

for example, if the numerical values of the objectives differ significantly, then, instead of the equal

weighting in Equation (3), one could choose more appropriate weights.

After the determination of the reoptimized reference points, the calculation of Pareto points

continues as described in.1

Reoptimization under uncertainties

A typical situation that occurs when calculating an extreme compromise under uncertainties is

sketched in figure 2. For simplicity, suppose the multicriteria problem consists of minimizing two

objective functions f1, f2, and only two scenarios p(1), p(2) are considered. The goal is to find the

robust minimum, i.e. the worst minimal case, of the objective functions f1 and f2.

For now, let us be interested in the worst minimum of f1 (i.e. we put a high weight on f1 and no

weight on f2). The minimum of f1 for a certain scenario β, minx f1

(
x,p(β)

)
, is named f1

(
x(β),p(β)

)
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Figure 2: Reoptimization procedure in one objective function for a setting of two objectives and
two scenarios in uncertain parameter space. The full (dashed) curves denote the Pareto boundaries
for a model parameter fixed to scenario p(2) (p(1)). The open circle stands for the reference point
found without reoptimization. In the multicriteria setting, the reoptimization procedure is applied,
leading to the full circle.

with β ∈ {1, 2}.

In the example in figure 2 it holds that f1

(
x(1),p(1)

)
> f1

(
x(2),p(2)

)
, but f2

(
x(1),p(1)

)
< f2

(
x(2),p(2)

)
.

Obviously, the robust, i.e. worst, minimal value for f1 is f1(x(1),p(1)), cf. the open circle in figure 2.

However, in a multi-criteria setting, the objective f2 has to be considered as well. In scenario β = 2,

the objective function f2 can take worse values than f2(x(1),p(1)) while the value of f1 remains at its

worst minimal value, cf. the filled circle of scenario 2 in figure 2. This solution is the worst case

of the multi-criteria setting.

The corresponding correct value for f2 is obtained by the following optimization problem:

min
x

max
β=1,2

f2

(
x,p(β)

)
(6)

s.t. f1

(
x,p(β)

)
≤ f1

(
x(1),p(1)

)
∀β = 1, 2 (7)

g
(
x,p(β)

)
≥ 0 ∀β = 1, 2 . (8)

For the sake of completeness, we also note the formulation of the reoptimization problem in the
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worst case for an arbitrary number of objectives:

min
x

max
β=1,2

Nobj∑
j,k

f j

(
x,p(β)

)
(9)

s.t. fk

(
x,p(β)

)
≤ f ∗k ∀β = 1, 2 (10)

g
(
x,p(β)

)
≥ 0 ∀β = 1, 2 (11)

with f ∗k = minx maxβ=1,2 fk

(
x,p(β)

)
s.t. fk

(
x,p(β)

)
≤ f ∗k ∀ β = 1, 2. In the sum in (9), all terms are

weighted equally. This weighting is arbitrary and can be adjusted if needed.

The best case is treated similarly. Let Nscen be the number of scenarios (Nscen = 2 in the special

case above). Then, the non-reoptimized reference points are obtained from

f ∗k = min
x

min
β=1,...,Nscen

fk

(
x,p(β)

)
(12)

s.t. g
(
x,p(β)

)
≥ 0 ∀β = 1, . . . ,Nscen . (13)

Note that the best case is defined such that the restrictions (13) are fulfilled for each scenario.

Similarly, the reoptimization problem reads

min
x

min
β=1,...,Nscen

Nobj∑
j,k

f j

(
x,p(β)

)
(14)

s.t. fk

(
x,p(β)

)
≤ f ∗k ∀β = 1, . . . ,Nscen (15)

g
(
x,p(β)

)
≥ 0 ∀β = 1, . . . ,Nscen . (16)

Here, the situation is again similar to the one sketched in Fig. 1.

One-at-a-time and factorial design sensitivity samplings

In this section, a short account of the one-at-a-time and factorial sampling schemes is given. For

simplicity, we assume that the nominal value in the uncertain parameter space is in the origin, and
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that the sampling is done on a unit ball with radius 1 around the origin. This situation can always

be achieved by a suitable affine transformation.

It is convenient to use a design matrix D to calculate the Nscen-many sample points, where D is

a Nscen times Nunc-matrix:

P = D · 1Nunc×Nunc . (17)

Here, 1Nunc×Nunc is the unit matrix in Nunc dimensions, and the β-th row of P contains the sample

point p(β) = [P]β. For the one-at-a-time sampling, Nscen = 2Nunc, and

[D]β,k =


1, β = k

−1, β = k + 1

0, otherwise

(18)

For the full factorial design, D is a 2Nunc × Nunc matrix which can be calculated as follows:

2 ·


0 . . . 0 0
...

. . .
...

1 . . . 1 1

︸               ︷︷               ︸
Binary numbers from 0 to 2Nunc − 1

−


1 . . . 1
...

. . .
...

1 . . . 1

 =


−1 . . . −1 −1
...

. . .
...

1 . . . 1 1

 . (19)

Finally, we mention the design matrix for a reduced factorial design of resolution III, which can be

constructed as follows. For Nunc uncertain parameters, one first calculates the binary representation

of Nunc, which is assumed to have length nb. Similarly to Equation (19), one obtains the 2nb times

nb base matrix as


0 . . . 0 0
...

. . .
...

1 . . . 1 1

︸               ︷︷               ︸
Binary numbers from 0 to 2nb − 1

. (20)
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Obviously, if log2 Nunc = n is integer, then nb = n + 1. From the base matrix (20), one obtains,

in analogy to Equation (19), a matrix with entries ±1. To this matrix, called Da here, additional

columns have to be added in order to obtain the desired design matrix.

To do this, one looks again at the matrix in (20). Each row defines a mask vector if the sum of

the elements within this row is larger than one, for example

(1 1 0 . . . 0) . (21)

For each mask vector, one takes those columns from Da that correspond to the non-zero entries

within the mask vector and multiplies the elements of these columns point-wise. The resulting

columns are appended to Da, resulting in the 2nb times Nunc design matrix. For the special case

log2 Nunc = n integer, this design matrix encodes 2Nunc many sample points, i.e. Nscen = 2Nunc.

Otherwise, if Nunc = 2n + m with 0 < m < 2n, the number of sample points is Nscen = 2n+1.

The advantage of using a design matrix becomes obvious now: As sensitivity measure S (α)
j,k ,

averaged difference quotients are defined:

s(α)
j = cDT f(α)

j . (22)

Now DT is a Nunc × Nscen-matrix, and f(α)
j := ( f j(x(α),p(1)), . . . , f j(x(α),p(Nscen)))T contains the Nscen-

many samples of the j-th objective. Thus S (α)
j,k =

[
s(α)

j

]
k
. The normalization constant c is

c =


1, one − at − a − time

2Nunc−1, full factorial design

Nunc/2, reduced factorial design

Generalizations of these sensitivity measures are possible and may be adequate in different con-

texts. For example, one can scale the S (α)
j,k by some distance measure of the sample points for each

parameter pk. Furthermore, it can be interesting to calculate the uncertainty with respect to the no-
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minal point, that is, to take the deviation from the nominal point directly into account. An example

to model this is given in.2

Thermo-physical properties and sensitivity settings

In the following, some additional information on the thermodynamic model parameters is given.

In Table 1 the boiling temperatures at specific pressures, the enthalpy of vaporization and the molar

mass of the components are listed.

Table 1: Normal boiling temperature (1 bar), enthalpy of vaporization (∆hV) and molar mass (M)
of the pure substances

t (1 bar) [◦C] ∆hV [kJ/kg] M [g/mol]d

methyl formate 31.44 462.1 60.1
Methanol 64.27 1173.4 32.0

In table 2 the parameters for the used NRTL model are given.

Table 2: NRTL- parameter used in CHEMASIM; accuracy: 1044 measured points, Standard devi-
ation: 2.041

A12 B12 A21 B21 C12 D12

MF-MEOH 0.9805 -32.60 -2.233 860.3 0.3 0
MEOH-WA 6.304 -1891.9 3.940 1337.6 0.3 0

The sampling points for the sensitivity analysis using a factorial design are listed below. Each

of them represents one scenario. N is the center of the cube, standing for the nominal settings.

N :=


8000

0.2

1.3420





UC1 :=


7960

0.18

1.2078

 UC2 :=


7960

0.18

1.4762

 UC3 :=


8040

0.18

1.2078

 UC4 :=


8040

0.18

1.4762



UC5 :=


7960

0.22

1.2078

 UC6 :=


7960

0.22

1.4762

 UC7 :=


8040

0.22

1.2078

 UC8 :=


8040

0.22

1.4762


The influence of the perturbation in the activity coefficient for both components of the reactive

system MF-MeOH in infinite dilution (γ∞,PMF-MeOH and γ∞,PMeOH-MF) on the NQ curve is shown in the

following figure.

Figure 3: Influence of γ∞,PMF-MeOH (�: 0.9, 4: 1.1) and γ∞,PMeOH-MF (+:0.9, ×:1.1). �: Nominal case.

It can be seen that the effect of γ∞,PMF-MeOH is larger than that of γ∞,PMeOH-MF, especially for lower

values of Q̇.
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