Supporting Information

New emission factors and efficiencies from in-field measurements of traditional and improved cookstoves and their potential implications

Evan R. Coffey^{*†}, Didier Muvandimwe[†], Yolanda Hagar[‡], Christine Wiedinmyer^{I+}, Ernest Kanyomse[§], Ricardo Piedrahita[†], Katherine L. Dickinson^{I,¥}, Abraham Oduro[§], Michael P. Hannigan[†]

[†]University of Colorado Boulder, Mechanical Engineering, 1111 Engineering Drive Boulder, CO 80309, United States
[‡]University of Colorado Boulder, Applied Mathematics, 1111 Engineering Drive Boulder, CO 80309, United States
[†]National Center for Atmospheric Research, 3090 Center Green Dr., Boulder, CO 80301, United States
⁺Now at University of Colorado, CIRES, 216 UCB, Boulder, CO 80309
[§]Navrongo Health Research Centre, Navrongo Upper East, Ghana
[¥]University of Colorado Boulder, Center for Science and Technology Policy Research, 1333 Grandview Avenue Boulder, CO 80309, United States

* e-mail: evan.coffey@colorado.edu

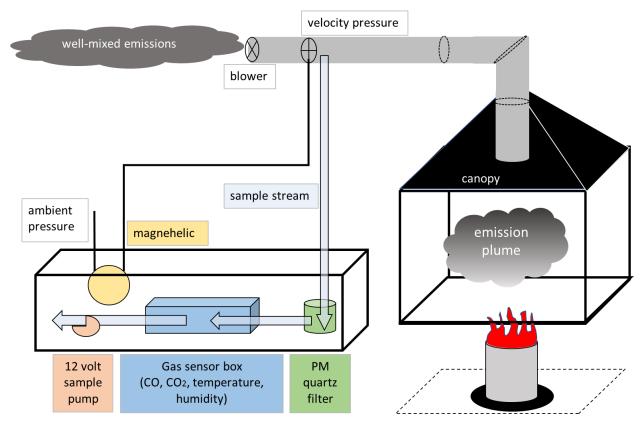
Contents:	Page
Section S1. Quality assurance and control and sources and estimates of uncertainty	S 2

Figures

	Figure S1. Stoves	S 3
	Figure S2. EPOD schematic	S 4
	Figure S3. CO sensor calibration	S 8
	Figure S4. CO2 sensor calibration	S 8
	Figure S5. Visual representation of EC/OC mixed effects modeling	S9
	Figure S6. Efficiency and EC/OC distributions	S10
Tables	8	
	Table S1. Sampling information (meal, fuel moisture, season, pot size)	S5
	Table S2. Field test results by stove/fuel type	S 6
	Table S3. Mixed effects model results	S7

Section S1. Quality assurance and control and sources and estimates of uncertainty:

Overall Thermal Efficiency: Households usually store water in large plastic containers or covered pots leading to the assumed 75° temperature change for sensible heat calculations (297K to 372K). Ambient temperatures in the test region range from 18-35°C. Uncertainty in sensible heat calculations was estimated using a ± 10 -degree temperature difference which leads to a 12% relative uncertainty in sensible heat. Before obtaining a higher quality scale, food and wood mass uncertainty were 10%. Water and food mass to calculate latent heat was weighed using a scale with 2-gram resolution leading to very small error relative to the sensible heat. Most food ingredients have high water content. Non-invasive infrared measurements, controlling for heated vapors, was identified as a promising way to measure water temperature that should be tested in future work.


Modified Combustion Efficiency: Carbon dioxide and carbon monoxide gas concentration uncertainty was calculated at 15 ppm or 3% of range (0-5000ppm) and 2.1 ppm (0-140ppm), respectively. Details on the calibration can be found in Figures S3 and S4. When propagated, MCE relative uncertainty is less than 3%.

Carbonaceous aerosol particulate analysis: Quartz fiber filters were pre-baked in an oven at 500°C for 24 hours and stored in amber glass jars spaced with aluminum foil disks. Filters were analyzed with a Sunset OCEC Analyzer using the NIOSH 5040 protocol. Sample filters were blank subtracted using the median blank filter values from each jar.

84 Figure S1: Types of stoves tested in the field (clockwise from top left); Philips HD4012-LS with reinforced pot stand, Gyapa woodstove, threestone fire and local coalpot.

00

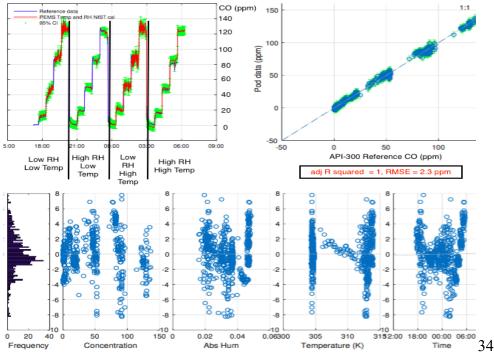
Figure S2: The EPOD sampling schematic employs the partial emission capture technique complete with a canopy over the stove, a blower to mix the emissions and a sample stream where PM is collected and gas phase species are measured in addition to environmental variables (i.e. temperature and humidity).

Meal	Beans	Jollof Rice	Rice	Rice & Beans	Rice & Soup	TZ & Soup	Vegetable Soup	Total
Threestone	1	1	3	1	. 1	10	. 4	21
Coalpot	0	3	0	0	1	6	0	10
Gyapa Wood	3	2	3	1	1	7	1	18
Philips Charcoal	1	4	2	1	2	3	1	14
Philips Wood	0	3	2	0	0	5	2	12
Total	5	13	10	3	5	31	8	
Season	Harmattan	Heavy_Rainy	Hot_dry	Light_Rainy	Transition	Total		
Threestone	10	7	4	0	0	21		
Coalpot	0	7	0	3	0	10		
Gyapa Wood	7	8	1	2	0	18		
Philips Charcoal	1	5	1	4	3	14		
Philips Wood	6	4	1	1	0	12		
Total	24	31	7	10	3			
Moisture level	Low	Medium	High	Total				
Threestone	12	5	4	21				
Threestone Coalpot	12 10	5 0	4 0	21 10				
Threestone Coalpot Gyapa Wood	12 10 9	5 0 6	4 0 3	21 10 17				
Threestone Coalpot Gyapa Wood Philips Charcoal	12 10 9 14	5 0 6 0	4 0 3 0	21 10 17 14				
Threestone Coalpot Gyapa Wood Philips Charcoal Philips Wood	12 10 9 14 9	5 0 6 0 3	4 0 3 0 0	21 10 17				
Threestone Coalpot Gyapa Wood Philips Charcoal	12 10 9 14	5 0 6 0	4 0 3 0	21 10 17 14				
Threestone Coalpot Gyapa Wood Philips Charcoal Philips Wood Total	12 10 9 14 9 41	5 0 6 0 3 18	4 0 3 0 0 16	21 10 17 14 12				
Threestone Coalpot Gyapa Wood Philips Charcoal Philips Wood Total Pot Size	12 10 9 14 9 41 Small	5 0 6 0 3 18 Medium	4 0 3 0 16 Large	21 10 17 14 12 Total				
Threestone Coalpot Gyapa Wood Philips Charcoal Philips Wood Total Pot Size Threestone	12 10 9 14 9 41 Small	5 0 3 18 Medium	4 0 3 0 16 Large	21 10 17 14 12 Total 21				
Threestone Coalpot Gyapa Wood Philips Charcoal Philips Wood Total Pot Size Threestone Coalpot	12 10 9 14 9 41 Small	5 0 3 18 Medium 10 5	4 0 3 0 16 Large 10 2	21 10 17 14 12 Total 21 10				
Threestone Coalpot Gyapa Wood Philips Charcoal Philips Wood Total Pot Size Threestone Coalpot Gyapa Wood	12 10 9 14 9 41 Small 1 3	5 0 3 18 Medium 10 5 12	4 0 3 0 16 Large 10 2 6	21 10 17 14 12 Total 21 10 18				
Threestone Coalpot Gyapa Wood Philips Charcoal Philips Wood Total Pot Size Threestone Coalpot Gyapa Wood Philips Charcoal	12 10 9 14 9 41 Small 1 3 0	5 0 3 18 Medium 10 5 12 9	4 0 3 0 16 Large 10 2	21 10 17 14 12 Total 21 10 18 14				
Threestone Coalpot Gyapa Wood Philips Charcoal Philips Wood Total Pot Size Threestone Coalpot Gyapa Wood Philips Charcoal Philips Wood	12 10 9 14 9 41 Small 1 3 0 4	5 0 3 3 18 Medium 10 5 12 9 5	4 0 3 0 16 Large 10 2 6 1 6	21 10 17 14 12 Total 21 10 18				
Threestone Coalpot Gyapa Wood Philips Charcoal Philips Wood Total Pot Size Threestone Coalpot Gyapa Wood Philips Charcoal	12 10 9 14 9 41 Small 1 3 0 4 1	5 0 3 18 Medium 10 5 12 9	4 0 3 0 16 Large 10 2 6 1	21 10 17 14 12 Total 21 10 18 14				

Table S1: Sample information – number of each sample type.

			Food					Specific Fuel		Emission H					
Stove and fuel	Stats	Mean firepower kW	mass cooked kg	Cooking time min	MCE %	HTE %	OTE %	Consumption (kg fuel per kg food)	СО	CO ₂	РМ	OC	EC	EC/OC %	EC/TC %
	Ν	20	17	21	15	14	17	17			15			15	15
Threestone	mean	6.8	8.5	96	93.3	24.0	21.7	0.30	70	1541	4.2	2.1	0.2	7.7	7.1
with wood	median	7.1	9.6	97	92.4	22.8	17.0	0.30	77	1551	3.7	1.9	0.1	7.4	6.9
	COV	26	42	20	4.4^{Ψ}	55^{Ψ}	53 ^Ψ	47^{Ψ}	29^{Ψ}	4^{Ψ}	79^{Ψ}	79^{Ψ}	91 ^Ψ	52^{Ψ}	49^{Ψ}
	N	17	14	18	18	14	14	14			18			18	18
Gyapa with	mean	5.4	7.2	91	94.5	25.8	24.2	0.27	58	1570	2.6	1.2	0.4	32.5	22
wood	median	5.2	5.3	84	95.1	24.1	22.1	0.23	51	1584	2.4	1	0.3	25	20
	COV	48	61	39	5.4 ^Ψ	49^{Ψ}	48^{Ψ}	49^{Ψ}	42^{Ψ}	4^{Ψ}	53^{Ψ}	52^{Ψ}	217^{Ψ}	180^{Ψ}	139 ^Ψ
	N	11	10	12	11	10	10	10	11					11	12
Philips with	mean	4.1	6.2	74	95.9	37.3	35.8	0.19	45	1628	2.5	1.2	0.3	22.7	16.3
wood	median	3.8	5.3	64	95.8	35.7	34.4	0.15	51	1602	1.4	0.7	0.2	14.8	12.9
	COV	29	60	35	4.2^{Ψ}	70^{Ψ}	70^{Ψ}	69^{Ψ}	58^{Ψ}	6^{Ψ}	78^{Ψ}	78^{Ψ}	339^{Ψ}	233^{Ψ}	190^{Ψ}
	N	14	12	14	13	12	12	12			13		13	13	
Philips with	mean	3.7	5.2	91	93.9	26.0	24.4	0.21	92	2234	1.6	0.8	0.1	12.2	5.9
charcoal	median	3.1	3.6	94	94.6	26.5	25.0	0.20	79	2288	1.1	0.6	<<0.1	2.3	2.3
	COV	67	61	31	7.7^{Ψ}	46^{Ψ}	47^{Ψ}	44^{Ψ}	63^{Ψ}	8^{Ψ}	88^{Ψ}	83^{Ψ}	314^{Ψ}	185^{Ψ}	153^{Ψ}
	Ν	10	10	10	10	10	10	10			10			10	10
Coalpot with	mean	3.3	6.2	107	88.0	29.0	25.6	0.28	187	2148	0.8	0.4	<<0.1	1.9	1.9
charcoal	median	3.3	5.3	106	89.5	29.7	26.2	0.23	164	2195	0.8	0.4	<<0.1	1.7	1.7
	COV	32	60	27	8.5^{Ψ}	55^{Ψ}	56 ^Ψ	49^{Ψ}	25^{Ψ}	5^{Ψ}	52^{Ψ}	52^{Ψ}	34^{Ψ}	55^{Ψ}	53 ^Ψ

Table S2: Overall field test results of stove/fuel combinations.


Mean, median and coefficients of variation (COV, %) for various performance metrics are presented for the five stove/fuel categories. EC/OC values calculated from fuel basis EFs.

 Ψ - $COV_{log normal} = \sqrt{e^{(ln(10) \times std_{10})^2} - 1}$, where std_{10} is the standard deviation of log_{10} transformed metric.

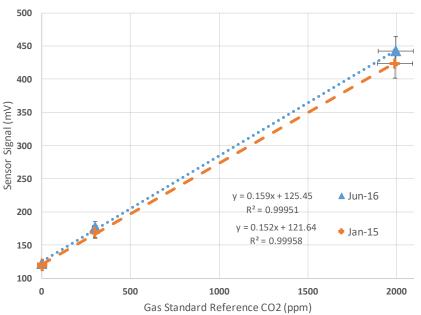

	Emission Factor (g*kg dry fuel ⁻¹)							EC/OC	•		MCE		HTE		OTE	OTE		Fuel otion						
	CO CO ₂			CO ₂ PM		EC					CO		CO ₂ PN		-									
	% diff.	р	% diff.	р	% diff.	р	% diff.	р	% diff.	р	% diff.	р	% diff.	р	% diff.	р	% diff.	р	% diff.	р	% diff.	р	% diff.	р
Philips Wood	-46 (-65,-18)↓	<0.01	13 (0,28)↑	0.04	-13 (-53,61)	0.64	-22 (-71,111)	0.62	-12 (-63,107)	0.76	-51 (-69,-22)↓	<0.01	-2 (-22,23)	0.85	-13 (-53,62)	0.65	6 (0.6,12)↑	0.03	-9 (-23,8)	0.27	-6 (-21,10)	0.42	-50 (-65,-27)↓	<0.01
Gyapa Wood	-21 (-41,7)	0.12	5 (-4,14)	0.29	-18 (-47,27)	0.36	122 (9,353)↑	0.03	202 (63,459)↑	<0.01	-7 (-34,32)	0.66	3 (-14,22)	0.78	-12 (-45,39)	0.57	3 (-1,7)	0.12	-1 (-13,12)	0.83	-1 (-12,12)	0.88	-13 (-38,21)	0.38
Moisture medium	29 (-2,70)	0.07	7 (-2,15)	0.11	43 (-4,113)	0.07	-22 (-59,49)	0.44	-49 (-71,-11)↓	0.02	18 (-17,67)	0.33	7 (-10,26)	0.44	55 (-2,143)	0.06	-2 (-5,01)	0.22	-8 (-18,5)	0.20	-8 (-18,4)	0.18	-33 (-51,-7)↓	0.02
Moisture high	33 (-7,90)	0.11	6 (-5,17)	0.28	-33 (-60,14)	0.13	-77 (-90,-47) ↓	<0.01	-69 (-85,-37) ↓	<0.01	27 (-19,98)	0.28	11 (-11,37)	0.35	-30 (-61,25)	0.21	-6 (-7,1)	0.17	0 (-15,17)	0.99	-1 (-15,16)	0.92	-39 (-60,-8)↓	0.02
Firepower	3 (-8,14)	0.62	-1 (-4,2)	0.63	13 (-3,32)	0.12	15 (-10,47)	0.26	2 (-18,26)	0.87	20 (6,35)↑	<0.01	17 (10,24)↑	<0.01	13 (-3,32)	0.11	-0.4 (-2,1)	0.59	-16 (-19,-12)↓	< 0.01	-15 (-20,-12)↓	<0.01	NaN	NaN
Firepower*Gyapa	5 (-8,19)	0.48	0 (-4,3)	0.92	-4 (-20,14)	0.63	4 (-22,38)	0.79	9 (-15,39)	0.50	-1 (-16,18)	0.93	1 (-7,9)	0.86	-2 (-21,23)	0.87	-0.4 (-2,1)	0.54	0 (-6,7)	0.86	0.3 (-6,6)	0.92	NaN	NaN
Firepower*Philips	-7 (-28,19)	0.54	-2 (-9, 6)	0.62	10 (-24,60)	0.60	-9 (-50,65)	0.74	-20 (-52,34)	0.38	1 (-25,34)	0.97	8 (-7,24)	0.30	8 (-25,60)	0.62	-0.1 (-3,3)	0.94	-10 (-18,0.2)	0.23	-10 (-18,0)↓	<0.05	NaN	NaN
MCE_std	0.5 (-2,3)	0.77	0.7 (-0.2,1.5)	0.12	2 (-2,7)	0.32	2 (-5,10)	0.51	0 (-6,6)	0.98	0 (-4,4)	0.90	0.5 (-1,2)	0.58	3 (-2,8)	0.24	0 (-0.3,0.3)	0.91	0 (-1.6,1)	0.60	-0.3 (-1.5,1)	0.65	-3 (-6,1)	0.11
MCE_std*Gyapa	7 (-3,18)	0.19	0.3 (-1.3,2)	0.74	7 (-1,16)	0.10	36 (19,55)↑	<0.01	33 (18,48)↑	<0.01	18 (-1,41)	0.06	-8 (-16,0)↓	<0.05	11 (-12,39)	0.38	-1 (-2,0)	0.12	2 (0,13)	0.05	5 (-1,12)	0.12	-11 (-26,6)	0.18
MCE_std*Philips	20 (4, 37)↑	0.01	0.4 (-3.5,4.5)	0.83	-8 (-20,14)	0.40	52 (10,109) ↑	0.01	73 (31,129)↑	<0.01	22 (5,42)↑	0.01	2 (-6,9)	0.69	-8 (-25,12)	0.38	-1 (-3,3)	0.23	3 (-3,8)	0.34	2 (-3,8)	0.43	13 (-2,30)	0.08
Food Production Rate	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-1 (-1.2,-0.4)↓	<0.01	-1 (-1.2,-0.8)↓	<0.01	-0.2 (-0.7,0.4)	0.54	NaN	NaN	1.1 (1,1.3)↑	<0.01	1.1 (1,1.3)↑	<0.01	NaN	NaN
ICC (btw/btw+wthn)	0.46		0.75		0.98		0.74		0.66		NA		NA		NA		0.44		NA		NA		NA	
n	43		43		43		43		43		38		38		38		43		38		38		38	
R ²	0.30		1		1		1		1		0.93		0.98		0.76		0.23		0.97		0.97		0.74	
Philips Charcoal	-77 (-92,-34)	<0.01	20 (-8,55)	0.42	-58 (-90,81)↓	0.04	4 (-90,948)	0.39	668 (13,5E3)↑	0.04	-91 (-97,-69)↓	<0.01	-21 (-49,23)	0.27	-68 (-94,82)	0.18	35 (14,59)↑	0.04	-2 (-31,41)	0.92	16 (-17,62)	0.38	-24 (-47,11)	0.15
MCE_std	11 (-5,31)	0.19	-2 (-5,3)	0.16	27 (2,59)	0.22	19 (-22,81)	0.97	-7 (-31,24)	0.60	25 (3,51)↑	0.03	0 (-7,7)	0.97	26 (-5,67)	0.10	-2 (-4,1)	0.44	-7 (-17,5)	0.93	-1 (-6,4)	0.65	NaN	NaN
Firepower	14 (-13,49)	0.32	-7 (-13,-1)↓	0.04	7 (-26,56)	0.69	26 (-10,78)	0.16	-25 (-53,22)	0.24	39 (5,83)↑	0.03	13 (2,26)↑	0.02	29 (-15,95)	0.20	-5 (-9,0)	0.06	-23 (-29,-16)↓	<0.01	-24 (-30,-18) ↓	<0.01	NaN	NaN
Firepower*PhilipsC	-5 (-30,29)	0.72	0 (-8,8)	0.95	-13 (-43,33)	0.49	NaN	NaN	111 (21,268)↑	0.01	-9 (-33,25)	0.54	2 (-9,15)	0.71	-10 (-44,42)	0.62	3 (-2,9)	0.38	2 (-9,10)	0.97	2 (-7,11)	0.71	NaN	NaN
Food Production Rate	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	-2 (-3,-1.3)↓	<0.01	-1.7 (-2,-1.4)	<0.01	-2 (-3.3,-1)↓	<0.01	NaN	NaN	1.8 (1.5,2)↑	<0.01	1.9 (1.6,2.1)↑	<0.01	NaN	NaN
n	23		23		23		23		23		22		22		22		23		22		22		22	
R ²	0.82		0.83		0.70		0.66		0.75		0.91		0.96		0.71		0.86		0.98		0.98		0.56	

Table S3: Mixed model results showing comparisons of ICS to traditional counterparts in additon to various stove perfomance variables.

Model results are reported as percent differences from reference with 95% confidence interval of this percent reduction (See Figure S5 for a visual example). Significance (marked as red) is assessed at 5%, with p-values. Arrows signal the direction of the difference from reference. N is the number of observations used in the model and R^2 is the adjusted correlation. NaN signifies a term not used in model or not applicable. *ICC* is the interclass correlation coefficient and defined as the ratio of between-household-variation (btw) to the sum of between and within household variation (btw+wthn). Specific fuel consumption is kg of dry fuel burned per kg of food produced.

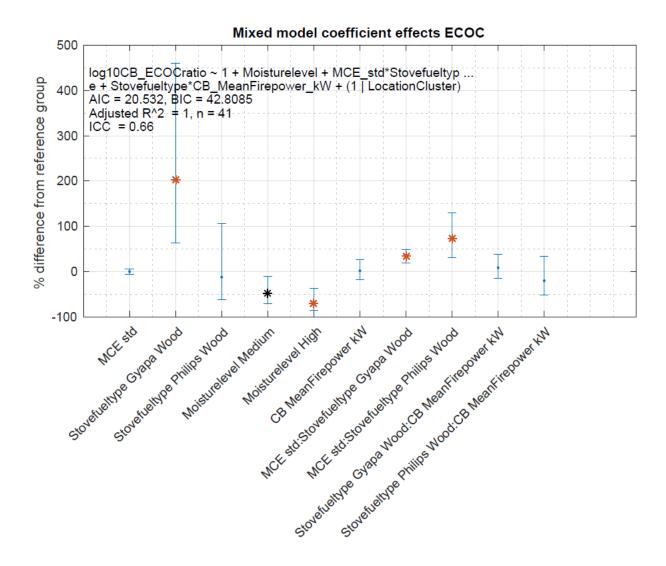
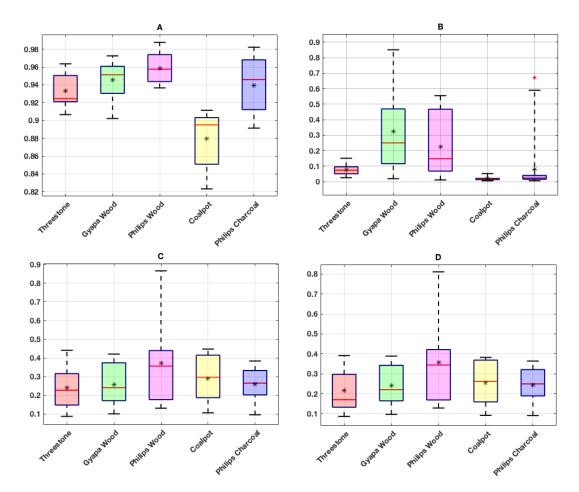


Figure S3: Calibration results for Alphasense B-4 CO electrochemical sensor using an API CO-300 reference monitor calibrated using reference gas standards; Five-step CO reference and sensor time series with varying temperatures and humidity (top left), correlation scatterplot (top right) and residuals (bottom). Particular attention was paid to covering extreme temperatures and humidity experienced in the field.



Carbon Dioxide ELT S-200 Sensor Calibrations

Figure S4: Carbon dioxide ELT S-200 IR calibration results using a LICOR 840a analyzer calibrated using three NIST traceable gas standards from 2015 (crosshairs) and 2016 (triangles) with 5% uncertainty bounds, showing high linearity and insignificant sensitivity changes over sampling interval.

Figure S5: Visual representation of mixed model results for EC/OC outcome for wood-fueled stoves. Blue dots represent average estimate percent differences from reference with black asterisks signifying significance at the 5% level and red/orange asterisks signifying significance at the 1% level. Error bars represent 95% confidence interval of estimate. For example, EC/OC is on average 200% larger for the Gyapa stove than the threestone fire (reference). Likewise, medium and high moisture levels are linked to 49 and 69 percent less EC/OC than low moisture (reference), respectively. Lastly, the Gyapa and Philips modified combustion efficiency fluctuation interactions are both significant at explaining higher EC/OC relative to the threestone MCE fluctuation interaction.

Figure S6: Distributions of A) MCE B) EC/OC values C) HTE and D) OTE by stove/fuel group. Boxes represent interquartile range, line is median, asterisk is mean and whiskers are 5th/95th percentiles. ICS tend to exhibit more variation in performance overall. Differences between mean and median metrics for MCE and EC/OC are most drastic.