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Configurations

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

B Through the International Lattice Data grid and PACS-CS Collaboration:
S. Aoki, et al., Phys. Rev. D79 (2009) 034503.
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Through the International Lattice Data grid and PACS-CS Collaboration:
S. Aoki, et al., Phys. Rev. D79 (2009) 034503.

¢ Lattice Volume: 323 X 64

¢ Non-perturbative O (a)-improved Wilson quark action and lwasaki
gauge action

¢ 2 + 1 flavour dynamical-fermion QCD
€ Physical lattice spacing a = 0.0907 fm
® m, =411 MeV

B Electro-quenched:

¢ Dynamical QCD configurations only - 'sea’ quarks experience no B
field.

B Standard Interpolating Fields: x,1 = (uT C' s d) U, Xnl = (uTC’% d) d
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Two Point Correlation Functions

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

Two point correlation function quark-flow diagram for a baryon

B Construct two point correlation functions using lattice QCD

July 13, 2017 Ryan Bignell (CSSM) 6 /23



Two Point Correlation Functions

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

Two point correlation function quark-flow diagram for a baryon

B Construct two point correlation functions using lattice QCD

B T[hese have exponential dependence on energy

G(t) x e Pt
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Landau Levels
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B A charged particle in an external magnetic field sits in a superposition of
energy levels

E*=m?+1¢geB|(2n+1— «) + p?
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Landau Levels

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

A charged particle in an external magnetic field sits in a superposition of
energy levels

E*=m?+1¢geB|(2n+1— «) + p?

B Quarks are charged - quarks have Landau levels!
B To what extent does this remain in QCD?

B The Landau levels are closely grouped in energy due to the small fields
used.

B Takes longer in Euclidean time for levels above ground state to be
exponentially suppressed.
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Creating the baryon; B =0

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

Investigate different levels of source smearing to a point sink.
Nsweeps = 100, 150, 200, 300

1.5

1.4/

1.1}

16 18 20 22 24 26 28 30
t
B 300 sweeps is found to provide optimal overlap with the states of interest.

This is used for further calculations
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Annihilating the baryon; B # 0

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

B Can account for Landau levels at baryon level.
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Annihilating the baryon; B # 0

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

Can account for Landau levels at baryon level.

€ neutron - neutrally charged - standard p = 0 fourier projection.

€ proton - charged - standard fourier projection produces superposition
of Landau levels ¢, (z)vr =1,2,3...

m Instead project to single Landau level using ¢1(z).

B What about the quark level though?

¢ Include Landau effects in quark propagation through use of Landau
eigenmodes.

€ Does a projection to the low-lying Landau levels improve overlap with
the states under investigation?
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QED+QCD Eigenmodes

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

B Define QED eigenmode projection operator

n:‘Sq]v kd‘

Pipp(e,y) = > (z|w) (vily)

1=1
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Pipp(e,y) = > (z|w) (vily)
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QED+QCD Eigenmodes

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

B Define QED eigenmode projection operator

n:‘Sq]v kd‘

Pipp(e,y) = > (z|w) (vily)

1=1

B Also define QED4+QCD eigenmode projection operator

n=—nNmax

Porp+ocp(®,y) = Z (x| Ai) (N\ily)
i—1

B and project the propagator at the sink (implicit sum over z)
Sy, z,a) = Py(y, z) S(z,x)

| describes which projection operator is used, i.e. a=QED or
a=QED+QCD.
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Ratio Construction

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

B Recall the energy of baryon is

BB)=M+ji-B- "2 55 0B

B Construct ratio of spin and field direction aligned and anti-aligned
correlation functions.

B G¢(B—|—,t)-|—GT(B—,t) G¢(B—,t)—|—GT(B-|—,t)
R<B’t)‘( G,0.5) + C1(0.1 >( G(0.6) + C1(0.1) )
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Recall the energy of baryon is

BB)=M+ji-B- "2 55 0B

B Construct ratio of spin and field direction aligned and anti-aligned
correlation functions.

R(B.1) = (G¢(B+,t) + GT(B—,t)> (G¢(B—,t) + GT(B+775))

Gi((), t) + GT(O, t) Gi(o, t) + GT(O, t)

B Then extract an effective energy in the standard manner.

1 R(B,1t)
20B(B) = 5 log (R(B,t n 5t)>
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Standard and eigenmode-projected comparision

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

0.1

e

SE(B) (GeV)

—0.1}

096 18 20 22 24 26 28 30
t
Neutron energy shift relevant to the magnetic polarisability
for largest field strength (BF3).
Standard correlator is in orange, eigenmode-projected is in blue.
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Fit window selection

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

SE(B) = (Igej\f; | 4277 532)

B To choose where to fit and obtain polarisability values, a number of
factors are considered.
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Fit window selection

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

SE(B) = (lg‘eﬁ | 4277 532)

B To choose where to fit and obtain polarisability values, a number of
factors are considered.

1. The constant fits to the energy shifts as function of time.
¢ \We only consider the same fit window across all field strengths.

2. The fits to energy shifts as function of field strength.
3. Time window is influenced by 0 F vs B fits.

B The X?iof of each fit in (1), (2) must be in an acceptable range

® Xy~ 1land x5, < 1.2
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Neutron Energy Shifts for polarisability

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

0.10 x x
¢ BFO ¢ BF2
¢ BF1 ¢ BF3
0.05¢
l !
O'OO°°°°°°‘°°°°‘4
S R |
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— —0.05¢ i
EQ/ g 3 ¢ ¢ § § i
© ¢
— 1 |
0 O: ;
-
—-0.15¢ o
_.2 ] ] ] ] ] ]
0 016 18 20 22 24 26 28 30
t

Smeared Source to QED eigenmode projected sink neutron energy shift
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Neutron Energy Shifts for polarisability

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

0.10 | | ,
Xgaf:05106 X§0f201184
2 —0.4151
0.05[__**
l {
0.00
Q
~ -0.05} i |
D Pl b
© _o0.10} ¢
10 X
4
_0.15‘ §

0206 18 20 22 22 26 28 30
t
Smeared Source to QED eigenmode projected sink neutron energy shift

B |t is now possible to get plateaus in the energy shifts by using the
projection methods.
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Fit types
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B Recall

lge B _ 4w

B2
2 M 2 g

SE(B)
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Fit types

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

B Recall

SE(B) = (% - 47” 532>

B Neutron is overall chargeless

& fit quadratic term only; o ¢y k?
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Fit types

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

B Recall

SE(B) = (|ge]\1;| - 47”532>

B Neutron is overall chargeless

& fit quadratic term only; o ¢y k?

B Proton overall charge ¢ =1

& Fit linear + quadratic terms; o ¢ k + ¢o k?

¢ Expect charge term produces ¢ ~=1
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Neutron polarisability fit, 3,, = 1.39(15) x 10~*

fm?

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

0.02 Fits to energy shifts; ¢ =[22, 25]

0.00
—0.02
—0.04

—0.06

SEs (GeV)

—0.08+

—0.10¢

-0.12¢

— o k?, x3,;=1.062

~0.145 ; ; 5 2
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Proton Energy Shifts for polarisability

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary
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QED+QCD eigenmode-projected propagators
Smeared source to Landau projected at baryon level for proton sink.
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Proton Energy Shifts for polarisability

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

0.20

4
B
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QED+QCD eigenmode-projected propagators
Smeared source to Landau projected at baryon level for proton sink.
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Proton polarisability fit, 3, = 1.15(24) x 104

fm?

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary
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Nucleon Polarisability

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

Experiment (m, = 138 MeV) | This Work (m, = 411 MeV)
proton | 2.5(4) x 10~* fm? 1.15(24) x 10~* fm?3
neutron | 3.7(12) x 10~ fm?3 1.39(15) x 10~* fm?3
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B Relative uncertainties in proton measurements are similar.

B Thereis potential to make a precise prediction in the neutron case.
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Experiment (m, = 138 MeV) | This Work (m, = 411 MeV)
proton | 2.5(4) x 10~* fm? 1.15(24) x 10~* fm?3
neutron | 3.7(12) x 10~ fm?3 1.39(15) x 10~* fm?3

B Relative uncertainties in proton measurements are similar.
B Thereis potential to make a precise prediction in the neutron case.

B Expect chiral extrapolation to be important - particularly near physical
masses.
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Chiral Extrapolations

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

7 : | | I
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¢ Lattice results
5 H . ¢ Infinite volume results —
o — Infinite volume extrapolation
E X Prediction at the physical point
Yy 4 || o —]
T x*
o
T3 A\ 7
g X
1 _
0 L | | |
0.00 0.05 0.10 0.15 0.20

m_? (GeV?)

Chiral extrapolation of the magnetic polarisability of the neutron accounting
for electro-quenching effect

July 13, 2017 Ryan Bignell (CSSM) 21 /23



Summary

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

1. Explored novel eigenmode-projection operators applied to quark
propagators

B To account for quark-level Landau levels.
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2. Investigated two different implementation of projection operators
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3. Then used the eigenmode-projected propagators and obtain plateaus.

B These energy shifts are consistent with a small-field energy expansion.
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Summary

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

1. Explored novel eigenmode-projection operators applied to quark
propagators

B To account for quark-level Landau levels.
2. Investigated two different implementation of projection operators

(a) QED Eigenmodes
(b) QED+QCD Eigenmodes

3. Then used the eigenmode-projected propagators and obtain plateaus.
B These energy shifts are consistent with a small-field energy expansion.

4. Fitted energy shifts such that magnetic polarisabilities are extracted with
an accuracy providing an interesting comparision to experiment.
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Magnetic Moment

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary Bonus Slides

B Considerably easier than magnetic polarisability

B Take a different ratio

Ao (&

B to get an energy shift of
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Magnetic Moment

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary Bonus Slides
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Energy shift for magnetic moment of the neutron.
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Magnetic Moment

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary Bonus Slides

B Extract magnetic moment from linear term

B Background field results are preliminary only

3PT (mx = 411 MeV) | BFM (m, = 411 MeV)

proton (fB,) | 2.18(2) un 2.24(6) un
neutron (B,) | —1.37(2) un —1.36(10) pun
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