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■ The Magnetic Polarisability (β) is a fundamental property of a system of
charged particles that describes the systems response to an external
magnetic field.

■ To calculate these with lattice QCD we use,

◆ the Background Field Method and a novel implementation of Landau
eigenmodes.
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1. How is it done?

■ Background Field Method

■ Simulation Details

■ Quark Operators

2. Magnetic Polarisability

■ Correlator Ratios

3. Results

■ Energy Shifts

■ Energy vs. Field Strength fits
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■ How is the uniform magnetic field put across the lattice?

D′
µ = ∂µ + g Gµ + qeAµ, U ′

µ(x) = Uµ(x) e
−i qe aAµ

■ Causes a shift in energy (small field limit) of the baryon.

E(B) = M + ~µ · ~B −
|qeB|

2M
−

4π

2
β B2 +O

(

B3
)

■ Magnetic moment µ and magnetic polarisability β.

■ Use of periodic boundary conditions impose a quantisation condition:
~B = B ẑ

qeB a2 =
2π k

NxNy
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■ Through the International Lattice Data grid and PACS-CS Collaboration:
S. Aoki, et al., Phys. Rev. D79 (2009) 034503.

◆ Lattice Volume: 323 × 64

◆ Non-perturbative O (a)-improved Wilson quark action and Iwasaki
gauge action

◆ 2 + 1 flavour dynamical-fermion QCD

◆ Physical lattice spacing a = 0.0907 fm

◆ mπ = 411 MeV

■ Electro-quenched:

◆ Dynamical QCD configurations only - ’sea’ quarks experience no B
field.

■ Standard Interpolating Fields: χp1 =
(

uT C γ5 d
)

u, χn1 =
(

uT C γ5 d
)

d
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0 x

Two point correlation function quark-flow diagram for a baryon

■ Construct two point correlation functions using lattice QCD

■ These have exponential dependence on energy

G(t) ∝ e−E t
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■ A charged particle in an external magnetic field sits in a superposition of
energy levels

E2 = m2 + |qeB| (2n+ 1− α) + p2z

■ Quarks are charged - quarks have Landau levels!

■ To what extent does this remain in QCD?

■ The Landau levels are closely grouped in energy due to the small fields
used.

■ Takes longer in Euclidean time for levels above ground state to be
exponentially suppressed.
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■ Investigate different levels of source smearing to a point sink.
Nsweeps = 100, 150, 200, 300

16 18 20 22 24 26 28 30
t

1.0

1.1

1.2

1.3

1.4

1.5
E
α

(G
eV

)

■ 300 sweeps is found to provide optimal overlap with the states of interest.
This is used for further calculations
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■ Can account for Landau levels at baryon level.

◆ neutron - neutrally charged - standard ~p = 0 fourier projection.

◆ proton - charged - standard fourier projection produces superposition
of Landau levels φν(x) ν = 1, 2, 3 . . .

■ Instead project to single Landau level using φ1(x).

■ What about the quark level though?

◆ Include Landau effects in quark propagation through use of Landau
eigenmodes.

◆ Does a projection to the low-lying Landau levels improve overlap with
the states under investigation?
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Lowest lying eigenmode probability densities of lattice Laplacian operator.

■ Origin is centre of the x-y plane illustrated by bottom surface of the grid.

■ Project to these modes, i.e. φi(x) = 〈x | νi〉
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■ Define QED eigenmode projection operator

Pn
QED(x, y) =

n=|3 qf kd|
∑

i=1

〈x | νi〉 〈νi | y〉

■ Also define QED+QCD eigenmode projection operator

Pn
QED+QCD(x, y) =

n=nmax
∑

i=1

〈x |λi〉 〈λi | y〉

■ and project the propagator at the sink (implicit sum over z)

S(y, x, α) = Pα(y, z)S(z, x)

I describes which projection operator is used, i.e. α=QED or
α=QED+QCD.
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■ Recall the energy of baryon is

E(B) = M + ~µ · ~B −
|qeB|

2M
−

4π

2
β B2 +O

(

B3
)

■ Construct ratio of spin and field direction aligned and anti-aligned
correlation functions.

R(B, t) =

(

G↓(B+, t) +G↑(B−, t)

G↓(0, t) +G↑(0, t)

) (

G↓(B−, t) +G↑(B+, t)

G↓(0, t) +G↑(0, t)

)

■ Then extract an effective energy in the standard manner.

2 δE(B) =
1

δt
log

(

R(B, t)

R(B, t+ δt)

)

=

(

|qeB|

2M
−

4π

2
β B2

)



Ratio Construction

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

July 13, 2017 Ryan Bignell (CSSM) 12 / 23

■ Recall the energy of baryon is

E(B) = M + ~µ · ~B −
|qeB|

2M
−

4π

2
β B2 +O

(

B3
)

■ Construct ratio of spin and field direction aligned and anti-aligned
correlation functions.

R(B, t) =

(

G↓(B+, t) +G↑(B−, t)

G↓(0, t) +G↑(0, t)

) (

G↓(B−, t) +G↑(B+, t)

G↓(0, t) +G↑(0, t)

)

■ Then extract an effective energy in the standard manner.

2 δE(B) =
1

δt
log

(

R(B, t)

R(B, t+ δt)

)

=

(

|qeB|

2M
−

4π

2
β B2

)



Ratio Construction

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

July 13, 2017 Ryan Bignell (CSSM) 12 / 23

■ Recall the energy of baryon is

E(B) = M + ~µ · ~B −
|qeB|

2M
−

4π

2
β B2 +O

(

B3
)

■ Construct ratio of spin and field direction aligned and anti-aligned
correlation functions.

R(B, t) =

(

G↓(B+, t) +G↑(B−, t)

G↓(0, t) +G↑(0, t)

) (

G↓(B−, t) +G↑(B+, t)

G↓(0, t) +G↑(0, t)

)

■ Then extract an effective energy in the standard manner.

2 δE(B) =
1

δt
log

(

R(B, t)

R(B, t+ δt)

)

=

(

|qeB|

2M
−

4π

2
β B2

)



Ratio Construction

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

July 13, 2017 Ryan Bignell (CSSM) 12 / 23

■ Recall the energy of baryon is

E(B) = M + ~µ · ~B −
|qeB|

2M
−

4π

2
β B2 +O

(

B3
)

■ Construct ratio of spin and field direction aligned and anti-aligned
correlation functions.

R(B, t) =

(

G↓(B+, t) +G↑(B−, t)

G↓(0, t) +G↑(0, t)

) (

G↓(B−, t) +G↑(B+, t)

G↓(0, t) +G↑(0, t)

)

■ Then extract an effective energy in the standard manner.

2 δE(B) =
1

δt
log

(

R(B, t)

R(B, t+ δt)

)

=

(

|qeB|

2M
−

4π

2
β B2

)



Standard and eigenmode-projected comparision

Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

July 13, 2017 Ryan Bignell (CSSM) 13 / 23

16 18 20 22 24 26 28 30
t

0.2

0.1

0.0
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δE
(B

)
(G
eV

)

Neutron energy shift relevant to the magnetic polarisability
for largest field strength (BF3).

Standard correlator is in orange, eigenmode-projected is in blue.
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δE(B) =

(

|qeB|

2M
−

4π

2
β B2

)

■ To choose where to fit and obtain polarisability values, a number of
factors are considered.

1. The constant fits to the energy shifts as function of time.

◆ We only consider the same fit window across all field strengths.

2. The fits to energy shifts as function of field strength.
3. Time window is influenced by δE vs B fits.

■ The χ2
dof of each fit in (1), (2) must be in an acceptable range

◆ χ2
dof ≈ 1 and χ2

dof ≤ 1.2
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Smeared Source to QED eigenmode projected sink neutron energy shift

■ It is now possible to get plateaus in the energy shifts by using the
projection methods.
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Smeared Source to QED eigenmode projected sink neutron energy shift

■ It is now possible to get plateaus in the energy shifts by using the
projection methods.
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■ Recall

δE(B) =

(

|qeB|

2M
−

4π

2
β B2

)

■ Neutron is overall chargeless

◆ fit quadratic term only; ∝ c2 k
2

■ Proton overall charge q = 1

◆ Fit linear + quadratic terms; ∝ c1 k + c2 k
2

◆ Expect charge term produces q ≈= 1
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Neutron polarisability fit, βn = 1.39(15) × 10−4
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Smeared source to Landau projected at baryon level for proton sink.
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QED+QCD eigenmode-projected propagators
Smeared source to Landau projected at baryon level for proton sink.



Proton polarisability fit, βp = 1.15(24) × 10−4

fm3
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Introduction Background Field Method Simulation Details Quark Operators Magnetic Polarisability Results Summary

July 13, 2017 Ryan Bignell (CSSM) 20 / 23

Experiment (mπ = 138 MeV) This Work (mπ = 411 MeV)

proton 2.5(4)× 10−4 fm3 1.15(24)× 10−4 fm3

neutron 3.7(12)× 10−4 fm3 1.39(15)× 10−4 fm3

■ Relative uncertainties in proton measurements are similar.

■ There is potential to make a precise prediction in the neutron case.

■ Expect chiral extrapolation to be important - particularly near physical
masses.
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Chiral extrapolation of the magnetic polarisability of the neutron accounting
for electro-quenching effect
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1. Explored novel eigenmode-projection operators applied to quark
propagators

■ To account for quark-level Landau levels.

2. Investigated two different implementation of projection operators

(a) QED Eigenmodes
(b) QED+QCD Eigenmodes

3. Then used the eigenmode-projected propagators and obtain plateaus.

■ These energy shifts are consistent with a small-field energy expansion.

4. Fitted energy shifts such that magnetic polarisabilities are extracted with
an accuracy providing an interesting comparision to experiment.
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■ Considerably easier than magnetic polarisability

■ Take a different ratio

R(B, t) =

(

G↓(B−, t) +G↑(B+, t)

G↓(B+, t) +G↑(B−, t)

)

■ to get an energy shift of

δEµ(B) = −µB +O
(

B3
)
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Energy shift for magnetic moment of the neutron.
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■ Extract magnetic moment from linear term

■ Background field results are preliminary only

3PT (mπ = 411 MeV) BFM (mπ = 411 MeV)

proton (βp) 2.18(2)µN 2.24(6)µN

neutron (βn) −1.37(2)µN −1.36(10)µN
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