Reflecting on Hyperspectral Reflectance

Background

20 Years of Classifying Vegetation Spectra

e Mapping of plant species is possible using hyperspectral reflectance
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e Do specific wavebands or spectral regions provide more
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e 34 studies reported waveband selection.
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Figure 1: Delineation of main spectral regions in the 400—2400 nm domain. Reflectance spectra of three plant species (Sycamore maple, Black Locust, Red-barked dogwood), 20.00%
e Hyperspectral data is susceptible to the curse of dimensionality—where
the inclusion of a large number of explanatory features in a model can
reduce its accuracy. -
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. . . Ro b inia pseu dO acacia Figure 5: A) Presents and absence table of selected wavebands per individual study. B) Selection frequency of each 50 nm wavelength bin.
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' & ¢ ¥ s
FLeSS
e A large number of feature selection methods have been used in the e Selection frequency of the Near-infrared is low, except for the Red Edge
literature, with no single best performing method found. (700-749 nm).
> Visible Near-Infrared Shortwave-Infrared _ _
e The Near Shortwave-Infrared has higher selection frequency than the
N Far Shortwave-Infrared.
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Figure 2: Wavebands selected by three feature selection methods, Stepwise Discriminant Analysis (SDA), Support Vector Machine (SVM), Random Forest (RF). _9§ ! -
tsgo Q\:S ‘§\ °7§ e\fg ‘ 40.00%
>4 S S
. . . N W oy’ S o 30.00%
e Different feature selection methods select for different features when

applied to the same dataset.
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e The same feature selection method selects for different features when

Figure 6: Selection frequency of each 50 nm bin split by studies that used stepwise discriminant analysis (SDA), and those that did not.

applied to different datasets.

e The feature selection method Stepwise Discriminant Analysis (SDA)

® Pre-processing techniques can improve spectral separability of species, . .
heavily favours selection of Near-Infrared Wavelengths.

Figure 4: Leaf outlines of Sycamore maple, Black Locust, Red-barked dogwood, along with five leaf metrics measured at the time of spectral recording. N a dimensionless value

though can potentially decrease it.

representative of leaf structure. CHL total chlorophyll level. CAR total carotenoid level. EWT leaf equivalent water thickness. LMA leaf mass per area.

e Blue, Green and Red regions are also selected more frequently by SDA.
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e A literature review was performed of hyperspectral vegetation
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1st Derivative

Visible region is selected with greater frequency than other regions.
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classification studies between 1996—2016.

Percent Reflectance

Large degree of variability in selected wavebands caused by the use of

e Waveband selections from the literature were collated into a different pre-processing and feature selection methods.
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table with 50 nm increments.

o CONtINUUM Removal  esss=Smoothing s 1st Derivative

No clear evidence for or against similar waveband selection for

Figure 3: Sycamore maple spectra transformed by three pre-processing methods, continuum removal, Savitzky-Golay smoothing, 1st Derivative

e Selection frequency calculated by the percentage of studies taxonomically similar plants, due to aforementioned variability.

where a waveband was selected for each 50 nm increment. Some feature selection methods demonstrate a bias towards

selecting certain spectral regions.
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